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ABSTRACT 

This work focuses on the shoaling of large water waves with 
particular application to storm-generated waves and tsunamis  The 
specific objective is the exact simulation on a digital computer of 
finite-amplitude waves advancing on a beach of constant slope 

The study is based on the simulation technique called SUMMAC 
(the Stanford-University-Modified Marker-And-Cell Method)  The flow 
field is represented by a rectangular mesh of cells and by a line of 
hypothetical particles which defines the free surface  Based on the 
Navier-Stokes equations, finite-difference equations were derived so 
that the entire flow configuration could be advanced through a finite 
increment of time  The pressure and velocity components are used 
directly as the dependent variables  Through extensive analyses and 
numerical experiments, this scheme was found to be computationally 
stable if the cell size and the time increment are properly selected 

As a specific example, the dynamics of a solitary wave passing 
from a zone of constant depth onto a sloping beach were simulated 
Primary attention was focused on the details of the water particle 
motions and the changes in the amplitude and shape of the wave as it 
climbed the slope  The computed results are compared with the experi- 
ments with good agreement 

INTRODUCTION 

The motion of water waves whose amplitudes are appreciable in rela- 
tion to the water depth is nonlinear in nature (Stoker, 1957)  Conse- 
quently the linearized theory (Lamb, 1945) does not provide adequate 
physical description of waves in the shallow-water zones  Most of the 
existing nonlinear analytical theories deal with a steady-state solution 
(See, e g , Laitone,1960, Dean, 1965, Monkmeyer and Kutzback, 1965) 
However, in shallow water the primary interest is in the transient 
aspect of the wave processes  It is quite difficult to treat time- 
dependent problems of this kind without recourse to computational 
me thods 

At present several numerical methods are available for computing 
waves in shallow water and nonlinear terms are included to some extent 
(See, Street, et al , 1970, for a detailed summary)  These methods 
retain in their governing equations the terms representing the kinetic 
energy of the vertical motion to varying degrees of accuracy  Only 
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one space variable,  namely    x ,   is  involved      Vertical variation of the 
fluid variables has been eliminated by  integration or a series  expansion 
approach and use of boundary conditions      These approximate  theories 
generally produce good results  for  long waves  of small but  finite 
amplitude-to-depth ratio      However,  more must be known about  the 
internal distribution of pressure and velocity which must be incorpor- 
ated in the governing equations of motion if one wishes  to study waves 
of considerable amplitude 

Chan and Street  (1970a) proposed a computing technique for analy- 
zing two-dimensional finite-amplitude water waves  under transient 
conditions      The method,   called SUMMAC,  is a modified version of the 
Marker-And-Cell method  (MAC) which was originally developed by Welch, 
et al     (1966)      The essence of the modifications  consists  of a rigorous 
application of the  pressure boundary condition at  the  free surface and 
of an extrapolation of velocity components  from the  fluid interior so 
that inaccuracy  in shifting the  free surface is  kept at a minimum 

Thus,  Chan and Street  (1970a)  outlined the basic  features  of 
SUMMAC and established its viability as  an engineering research  tool 
The present work summarizes  the earlier study,  presents  some essential 
new concepts  and features,  and finally,   in giving a means  of treating 
sloping beach problems,   greatly broadens  the realms  of usage of MAC- 
type programs 

THE SUMMAC METHOD 

The presently implemented SUMMAC is designed  for simulating the 
unsteady motion of water waves  in two space dimensions      The  fluid  is 
regarded as  incompressible and the effect of viscosity is  considered 
to be negligible 

To set up a  computing network,   the  entire flow field is  covered 
with a rectangular mesh of cells,  each of dimensions     6x    and    6y 
The center of each cell is numbered by the indices    i    and    j   ,  with 
l    counting the  columns  in the x-direction and    j     counting the rows  in 
the y-direction of a  fixed Cartesian coordinate system (Fig    1)      The 
field-variable values describing the  flow are directly associated with 
these  cells  (Welch,  et al  ,   1966)      The  fluid velocity  components    u 
and    v    and the pressure    p    are used as  the  dependent variables while 
the independent variables  are    x    and    y  ,  the Cartesian space coor- 
dinates,  and  the  time variable     t 

In addition,   there  is a  line of marker particles whose sole  pur- 
pose  is  to indicate where  the  free surface is   located      The marker-and- 
cell system provides  an instantaneous representation of  the  flow field 
for any particular time during the evolution of the dynamics 

By neglecting viscosity, we  can reduce  the Navier-Stokes  equations 
for an incompressible  fluid to 

9t 3x 3y Sx      °x 
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St    3x    ay    3y  5y (2) 

Here g  and g„ are the components of gravity acceleration  All 
variables are dimensionless  The continuity equation is 

ax ay 
(3) 
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Fig 1  Cell Setup and Position of Variables 

On the surface of a vertical impermeable wall, the boundary condi- 
tions are 

u.0, g=0 and g=gx (4) 

Similar procedures can be followed to derive the boundary conditions 
for a horizontal solid boundary 
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ou S£ = v = 0  ,    — = 0      and      r*- = g 
ay Sy      y (5) 

For incompressible fluids with very low viscosity, such as water, it 
is sufficiently accurate to use the single condition on the free 
surface 

P = Pa(x,t) , (6) 

where    pa    is  the externally applied pressure at the free surface  (Chan 
and Street,   1970a) 

A finite-difference scheme can be derived  from Eqs     (1),   (2)  and 
(3)  for cell    (i,j)    in Fig    1 as  follows 

u   ,,     = u   ,,     + 6t • g    + —— (p 
i+%j i4%j 6x       6x Viij Pi+U) 

n+1    _    * 
vij+%        i.i+% 

6t 
u+t + 6t'gy+¥(pij -pU+i) ' 

n+1 n+1 n+1 u   -i     - u    , v     ., 
il+L D

n+1 =    i-Hjl L±L + 
ij 8x 

n+1 

(7) 

(8) 

(9) 6y 

* * 
where    D        is  the velocity divergence,    u      and    v      are contribu- 
tions  to  Ju and    vn+l  ,  respectively,  by pure  convection      Varia- 
bles with the superscript    n+1    are related  to  the    n+lth    time step 
while those  lacking a superscript are evaluated at  the    nth    step 
If the original MAC scheme is  used,    u      and    v      are  evaluated by 

u   ,i     = u   ,i     + 6t i+%j i+%j 

v     ,i   = v     ,,   + 6t ij+%        ij+% 

2 2 
u.     - u   ,n (uv). ,,     ,   -  (uv)   ,,    .i 

*1        i+l.l   , "l+kl-% 'i+%.1+£ 
6x 6y 

2 2 
(uv)    i    ,i   -  (uv). .,    ,,       v - v     ,, 

i-%1+%               i+%1+% +    n n+1 
6x 6y 

, (10) 

(11) 

Substituting Eqs  (7) and (8) into Eq (9) and requiring D 
lead to the pressure equation 

n+1 
n 
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where 
z-2(^) 

(13) 
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Near the free surface "irregular stars" (Fig 2) must be used to 
derive a special equation for pressure so that, in the discrete sense, 
the free surface condition [Eq (6)] is applied at the exact location 
of the surface and not in a nearby cell center where p is normally 

defined  Let % , TU '  % ' \    be the lenSths of the £our legs of 

the irregular star (Fig 2) and Pi.P2.P3. P4 
be the values of 

p at the ends of these legs  By expressing p-^  ,  p2 , P3 , P4 m 
terms of Taylor series expansions about the point (i,j) , Chan and 
Street (1970a) obtained 
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Fig 2  Irregular Star for P Calculations 

A complete set of initial data -- the u and v fields and 
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the position of a line of particles depicting the free surface -- are 
needed to start the computation  The initial pressure p need be 
known only approximately  A hydrostatic distribution is adequate, 
because the p field is obtainable if u and v are given  Chan 
and Street (1970b) described a method of generating the flow fields 
of a solitary wave which may be used as the initial condition in 
simulating the shoaling process 

The evolution of the fluid dynamics is calculated in "cycles" or 
time steps  At the start of each cycle the source term R   for each 
cell is evaluated by Eq  (14)  The pressure p is computed only for 
those cells whose centers fall within the fluid region  Equation (12) 
is used if the centers of the four neighboring cells are all located 
on the fluid side of the free surface  If any of these neighboring 
centers lies beyond the free surface, then Eq (15) is used  The 
Successive Over-Relaxation method is employed to solve for p , with 
Eqs  (12) and (15) being the iteration formulas  The iteration is 
terminated when the condition 

|p(m 1 iJ 

(m) .  (m-l)| 

is met  for every cell,  where     (m)    means  the    mth    iteration and    s 
is a predetermined small positive  number 

Now we can compute the new velocities using Eqs     (7)  and  (8) 
Then,  each  free surface marker particle is  advanced  to its  new position 
by 

n+1        n  ,    n+1   .. .,_. 
xfc      = xfc + uk      6t  , (17) 

n+1        n        n+1  _ /1o\ 
yk      = yk + Vk      6t   ' (18) 

where xk and y^ refer to the position of the kth particle and 
the particle velocities ufc and v^ are interpolated from the 
velocity fields at the n+Ith time step  Thus, a cycle is completed 
and the next one can be immediately started 

BOUNDARY CONDITIONS ON A SLOPE 

A set of boundary conditions can be rigorously obtained for a 
plane beach of constant slope which coincides with the diagonal of the 
cells (Fig 3)  The mam consideration in deriving an equation for 
p   which lies on the beach face is the conservation of mass  In Fig 
3 we require that the net flow into the triangular region equal zero 
at the n+lth time step, viz , 
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n+l     . n+1     , „ u    ,     5y - v     ,,   6x = 0 
'iJ+5> 

(19) 

By substituting Eqs     (7)  and  (8)  into Eq    (19) we have 

= 7T-1 -i-rJ- + -^^r + R 
2 2 

5x 6y 
(20) 

where 

6x        6y 

(21) 

ij 5t \   6x 6y    / \6x      6y/ 
(22) 

In the  iterative solution of the    p    field, Eq    (20)  is used at a 
beach cell 
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Fig 3  Definition Sketch for Computing p 
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Now,   consider the diamond-shaped  control volume  for computing the 
convective contribution    u*^       (Fig    4)       The  total influx of the 
u-momentum is as  follows 

Through Face 1 

M. 

Through Face 2 

M2 

1 bX Vi+lj+% \ 2 / 
(23) 

Through Face 3 

Through Face 4 

2 
(u    ,     + u   ,,     \ 

M4 = 6x 

2 

(VdLLpliil) (26) 6y 

The  area of the control volume is     6x6y        Therefore,  by relating 
the net inflow of the u-momentum to  its  rate  of increase,  we obtain 

(<+%, 8" 
MnjT\ (6x6y)  = Mx + 1^ + M3 + M4 (27) 

or,  by rearranging, 

UUj  = U^J + 6^ (M1 + "2 + M3 + V (28) 

The total u ,,   is then 

u ,,  = u ,  + 6t g + — (p  - P ,, ) (29) 
i+%J   i+5J      x  6x vrij   l+lj 
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Fig    4      Definition Sketch for Computing    u 

If Face 4 is  the beach face,  then    MA  = 0    because  there is  no flow 
across it      Similarly, we use    ML  = M,   = 0    if both Face 3  and Face 4 
are solid boundaries 

To evaluate    v near  the beach face,  a different  type of diamond- 
shaped  control volume  is used  (Fig    5)      Again,   the  concept of balancing 
momentum within  the  control volume  is employed  to  compute the  convective 

The  total influx of the    v-momentum is  as  follows contribution v .* 
ij+l 

Through Face  1 

Ml = " 6y ui+%j+l I 2 ,' (30) 

Through Face 2 

M2  =  6y (V*.1+l + Ui4%1+l)    (Vn4%+VnH4) 

/v    ji, + v     ,3 \ 2 
-   8x (31) 
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Through Face 3 

/vi1-t%+Vi-l1-%\ (32) 

Fig    5      Definition Sketch for Computing    v 

Balancing the net inflow of the v-momentum with its  rate of 
increase, we have 

(lijH±_l_V1ii) (fix6y) = Mi + M2 + M3 (33) 

St v  , = v, ,,+ ~- (M. + M, + M,) ij+%   ij4%  6x6y v 1   ^ 3 
(34) 

The total    v     ..is  then 
iJ+S 

>Z*-<3* + «*y+%^3-*^i> 
(35) 
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APPLICATION TO THE SHOALING OF WAVES 

The initial position of the wave crest was chosen such that neither 
the left-hand wall nor the beach influenced the wave at t = 0   The 
beach slope used first was S = 0 05  (1 on 20)  Each cell had the 
dimensions  6x = 0 50 and 6y = 0 025   The time increment was 
6t 0 05   The initial wave height was H = 0 25 

S* 0 05       H0/d0- 0 25 

SPILLING 

Fig 6  Shoaling on a 1/20 Slope (Surface Profiles) 

When the wave advances into the beach section where the water depth 
decreases, its shape changes  The wave profiles at various stages of 
shoaling are shown in Fig 6  It is seen that the wave shape gradually 
loses symmetry on the beach  The wave has a steeper front than its 
hind part which looks like a long tail  At approximately H/d =20, 
where H is the instantaneous wave height and d is the local still 
water depth under the wave crest, the wave crest peaks up with a very 
slight tendency to curl forward  This result is consistent with the 
observation of Ippen and Kulin (1955) that spilling rather than 
plunging occurs when a solitary wave of this magnitude breaks on the 
1/20 slope  All these properties regarding the wave deformation also 
agree with the observations of Camfield and Street (1967) 

The evolution of the fluid dynamics under the wave is best illus- 
trated by the contour plots of the u and v  fields   In Fig 7(a) 
the time history of the distribution of u is shown  On the two 
outermost contour lines,  u = 0 015   Then the value of u is 
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increased by 0 030 per line toward the wave crest  Thus,  u = 0 375 
at the wave crest at t = 0   When the wave xs well up the beach 
(t = 23 00) , u = 0 675 at its crest  In Fig 7(b) the motion of the 
v field is shown  To the left of the crest, the lowest contour line 
has v = -0.015 , and v decreases by 0 030 per line toward the free 
surface  To the right of the crest, the lowest contour line has 
v = +0 015 , and v increases by 0 030 per line toward the free surface 
The line v = 0 lies between the lines v = ±0 015 and is not shown 

-^r 
T • 0 00 

w®^ 
T • II 29 

—pf^-^ 
T • 23 00 

(a) u (b) v 

Fig 7  Shoaling on a 1/20 Slope (Velocity Contours) 

The contour lines in Fig 7 were computed by using a plotting 
program developed by Schreiber (1968)  The facility used was an 
IBM 2250 graphic display device in which the computed contour lines 
are shown on a TV screen  By directly photographing the surface of 
the screen, the contour plots were obtained  Several motion pictures 
have also been made with this apparatus  These graphical outputs 
prove to be valuable visual aids to an understanding of the physics 
in the waves 

In Fig 8 the mass transport phenomenon in the mid-section of the 
beach is shown  A vertical line of fluid particles are moved forward 
from their initial position x = 35 0 by the passing wave  The mass 
transport here is of the translation-type as opposed to the oscillation- 
type in the periodic waves  Also, the wave induced motion on the beach 
is seen to be quite uniform throughout the water depth 
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Fig 8  Shoaling on a 1/20 Slope (Particle Paths) 

To study the growth of the wave height H as a function of the 
local water depth d , computations were conducted covering a range 
of the initial height-to-depth ratios  (H /dQ)   The results are 
compared with the experiments of Ippen ana Kulm (1955) in Fig 9 
Ippen and Kulin did not indicate the HQ/do value associated with 
each data point, but H /d  is an important parameter in predicting 
the wave growth  The scattering of the measured data cannot be 
reconciled without knowledge of this parameter  However, the Ho/d 
ratio clearly has a profound effect on the wave's initial reaction to 
the slope  Our results show that m the region d/d > 0 45 , a 
solitary wave with smaller H0/dD has greater relative growth  (H/HQ) 
The trend is reversed in the shallower region where d/dQ < 0 45   For 
H /d = 0 10 comparison was also made with the theories of Peregrine 
(196?), Madsen ani Mei (1969) and the characteristics solution by 
Camfield and Street (1967) (Fig  10)  With the exception of the 
characteristics solution, these theories seem to agree quite well 
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Fig    9      Growth of Wave Amplitude    (S  = 0 05) 
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Second,  a wave with    H0/do = 0  10    was  shoaled on a beach with 
S = 0 045         In Fig    11 the  local height-to-depth ratio    H/d    is 
plotted against    x /db-l/S      --1     -      --  "v- J •.-••..  where is the distance measured from 
the intersection of the still water level and the beach and d^ («£ 085) 
is the breaking depth  The solution agrees favorably with the measure- 
ment of Camfield and Street (1967) 

BEACH SLOPE  S • 0 045 

O   EXPERIMENT (CAMFIELD a STREET, 1967) 

   SUMMAC 

H,/d0 • 0 10 

X*/dk- l/S 

Fig    11      Growth of Wave Amplitude     (S = 0 045) 

We also simulated wave run-up on a 45    slope which has direct 
application to  the study of wave run-up on coastline structures  such 
as rubble-mound breakwaters      The  cell size was     6x =  6y = 0  10        The 
initial wave height was    Ho/d0 = 0 48    and a time increment     6t = 0 05 
was  used in computation      The wave profiles at several stages  of run-up 
are plotted in Fig    12      Quantitative  comparison of these profiles with 
experiments was  not made because of the difficulty in obtaining a 
computed profile which corresponds  to a measured profile  in time 
Nevertheless,   the profiles  closely resemble  those observed by Street 
and Camfield  (1966)      We  find the  calculated envelope of the wave 
crests  slightly higher  than that of the experiment in the early stages 
of run-up,  but the engineering interest is  primarily in the prediction 
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of the maximum height of run-up RQ/d0  (Fig  12)  The numerical 
model gave Ro/d0 = 1 27 which is equal to the measured value 
(Street and Camfield, 1966) 

H0 /d0 » 0 48 

 STREET   a   CAMFIELD (1966) 
SUMMAC 

X/d, 

Fig     12      Run-up Profiles  on a 45    Slope 

CONCLUSIONS 

The successful application of the SUMMAC  technique to several 
physical problems  indicates  its usefulness as an engineering research 
tool for analyzing the dynamics of water waves  in two space dimensions 
It  is  capable of providing accurate quantitative results  as well as 
qualitative descriptions  [e  g  ,   the prediction of wave run-up on a 
45    slope]       In addition,  rapid advance in the design of high-speed 
computing systems makes numerical modeling economically feasible 

While  it is  possible to employ  the  SUMMAC  technique  to attack 
a wide variety of water wave problems,  some  limitations inherent in 
the method must be noted      First,  as a result of achieving a high 
degree of accuracy in applying the  free surface pressure condition by 
using irregular stars, waves after breaking cannot be simulated      When 
breaking occurs,   the computation must be  terminated      Second,  only 
non-turbulent flows  are  considered in our model      Although  laminar 
viscous  damping has   little effect on  large scale wave motions,  energy 
dissipation due to the  turbulence can be significant      However,  recent 
studies  by Gawain and Pritchett  (1970)  and by Pritchett  (1970)  show 
that it  is  feasible  to implement a phenomenological simulation of 
turbulence in the MAC  framework 
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