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SYNOPSIS

The ocean surface may be considered to be composed
of many waves traveling at different directions with
different frequencies A graphical plot showing the
allocation of wave energy to the different component
frequencies and directions 1s the directional spectrum
Directional spectrum has many applications in Coastal
Engineering Herein an analytical procedure 1s devel-
oped to obtain the directional spectrum from records of
an array of wave gages The two methods developed are
the "locked phase method” and the "random phase method
The locked phase method can be used to obtain the dis-
tribution of both phase as well as energy of the waves
with respect to frequency and direction and 1s a deter-
ministic approach The random phase analysis, on the
other hand, 1s more suitable for wind waves in the
ocean and yields Just the distribution of energy alone
as 1n most other procedures of spectrum analysis The
procedures programmed for computers are checked using
simulated data and laboratory data Wave records of the
Pacific Ocean obtained off Point Mugu, California, on a
5-gage array were analyzed using the method developed
and examples of the directional spectra obtained are
presented

"

INTRODUCTION

When confronted with a design or operation in the ocean environ-
ment, an engineer invariably needs to know how high the waves are and
from which direction they are coming Had ocean waves been single
sinusoids, one could immediately obtain the height and direction of
the waves But waves 1n the ocean do not look like sinusoids At best
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the ocean surface may be thought of being the result of adding together
very many sinusoids of various frequencies traveling 1in vairious direc-
tions Therefore one has to specify the particular wave for which the
height and direction are desired As frequency, i e , 1nverse of the
period of the component wave, 1s the least easily changeable wave para-
meter, the component wave may be specified by 1ts frequency So, the
problem 1s to obtain the wave amplitude a; and direction @, for the
various component frequencies, f But to consider the ocean surface
to be composed of a finite number of sinusoids 1s a poor approximation
A better approximation would be obtained 1f one lets the number of
component simple harmonic waves to approach infinity and the frequency
interval, Af , between them to approach zero The i1ndividual wave ampli-
tudes, a; , 1n this case must approach zero i1n order for the overall
wave heights to maintain a finite, mean square value However, in this
lamiting process the quantity a?/ZAf remains finite and therefore 1t
can be plotted as a continuous function of frequency If the quantity
a%/ZAf 18 plotted against frequency, the area under the curve within
the frequency band of Af 1s a?/z, but this 1s proportional to the
wave energy contributed by that frequency band because the energy of a
simple_harmonic wave of amplitude a, 1n a medium of unit weaight Y

18 Ya./2 per unit width of crest, see, for example, Wiegel (44) In
the same manner the number of component directions may be assumed to
approach infinity to yield a continuous function of direction and the
area undel that cuive for any angular width will be proportional to the
energy of the waves traveling in those directions for a particular fre-
quency Alternately, the above two plots can be combined into a two-~
dimensional plot which will show the distribution of energy with respect
to frequency and direction This 1s the Directional Spectrum

USES OF DIRECTIONAL SPECTRA

Directional spectrum shows the distribution of wave energy against
frequencies and directions Therefore, 1t specifies the wave climate
more completely than any other way, ideally When only some particular
1information like the predominant wave period and height alone are needed,
that can be obtained from the directional spectrum R M S wave height,
for example, 1s the volume under the directional spectrum Scott (37)
and Neumann and Pierson (34) provide equations for the significant wave
height from R M S wave height assuming different distributions for the
frequency spectrum As Wiegel (46) poainted out, there are still situa-
tions where the significant wave concept 1s useful to the design engineer,
but 1t might be possible to obtain that information from the directional
spectrum Nevertheless, there are many engineering problems where direc-
tional spectra are the necessary input data for the correct desigh or
prediction For example, for the study of the diffraction of wind waves
directional spectrum 1s necessary and, 1n fact, Wiegel and Mobarek (45)
and Fan (19) successfully used 1t for the study of diffraction of labora-
tory waind waves Refraction of ocean waves 1s another problem where the
directional spectrum 1s needed and Karlsson (24) used 1t for practical
cases In the design of offshore towers and piles directional spectrum
18 useful for the analysis of vibration and three-dimensional analysis
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of structures with torsional loads Malhotra and Penzien (29) have
succeeded 1n developing the procedure for analyzing tower structures
using the spectrum and indicated the need for the directional spectrum
For structures subjected to random forces, i1n general, a desigh by

the method of simulation on a computer is highly suited and direc-
tional spectra are the suitable 1nput data Borgman (11) showed how
this can be done for offshore pile structures by linearizing wave
forces Directional spectrum 1s necessary for the prediction of the
response of ships and floating drilling vessels to sea conditions as
the spectra of theilr motions can be obtained from the directional
spectra of the sea It is, 1n fact, used by naval architects (see for
example, Abkowitz, Vassilopoulos and Sellars (1)) Even for the design
of an ocean outfall sewer, directional spectrum may be useful because,
as Wiegel (43) pointed out, mixing and wave spectra are related Once
a single wave model for longshore transport 1s established, directional
spectrum may prove to be specifically cut out for the study of littoral
transport because 1t provides at once the three crucial parameters of
the problem, viz the wave energy, frequency and direction Another
major use for directional spectrum 1s in wave forecasting and hind-
casting In hindcasting the location of the origin of storms and the
path of swell can be deduced from the variation of the non-stationary
directional spectra, see Munk et al (32)

When directional spectra become available for desired locations,
several other uses also may be found for them The problem at present
1s 1ts non-~availability for almost any place Here again, barring
the huge expenses 1nvolved in the collection of necessary data, the
main hurdle 1s the lack of a valid, dependable computational procedure
to obtain directional spectra i1n a routine manner

REVIEW OF METHODS USED

The most direct way of obtaining the directional spectrum 1s to
obtain the sea surface elevations over an area by stereophotographs
and to analyze these data to get the directional spectra This was
done 1n the Atlantic Ocean by W J Pierson and his group, see Cote
et al (17), and in a much more modest scale by Ijima et al (23)
From the story of the Stereo Wave Observation Project [Cote et al (17)]
one realizes how arduous and expensive this method 1s Kinsman (25)
therefore doubts whether i1t will ever become habit forming Another
successful method applicable for deep oceanh 1s to take records of the
elevation and tilt of a free floating buoy as used by Longuet-Higgins,
Cartwright and Smith (27) Fiom the water surface elevation and the
slopes 1n two coordinate directions they computed the first five co-
efficients (1 e two harmonics) of the Fourier series expansion of
the directional spectrum To remove the appearance of negative energy
they used a smoothing function ®w, = = cos? The net result of
having a directional spectrum represented only up to two harmonics and
then smoothing 1t 1s to get a very broad angular width for the spectrum
I1f more accuracy 1s needed, records of the water surface curvatures
are to be obtained Ewing (18) also obtained a sequence of ten records
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of the directional spectra from the motions of a floating buoy located
1n the North Atlantic

The use of an array of wave recorders to measure wave parameters
and the computation of directional spectrum from it was tried by
several workers Barber (3) was probably the first to suggest it
The wave-gage array could be one-dimensional (line array) or two-
dimensional If one can make sure that no wave comes from one of the
sides of a line array, a line array can be used to obtain directional
spectrum Barber and Doyle (4), described a procedure to get the
directions of swells by using just two gages Stevens (39) described
the procedure to obtain directional spectrum from a line array and
used it for an array in Buzzards Bay Macovsky and Mechlin (28)
described a possible method of using a line array of inverted acoustic
fathometers mounted on the deck of a submarine Two-dimensional
arrays, in general, would be more appropriate for a general situation
Barber (6) discussed a general theory of gage arrays and suggested
ways to compare the directional resolving power of different arrays
Mobarek (31) found that the discrete energy method was the most
successful of the methods for the estimation of directional spectra
for laboratory wind waves Fan (19) used a 4~-gage array 1in the form
of a star and compared the Fourier transform method and Least Square
Method by simulation technique to obtain the directional spectra He
found that the Fourier Transform Method gave better results for higher
frequency components and the Least Square Fitting Method gave better
results for lower frequency components Two-dimensional arrays have
also been used in the ocean  Munk, Miller, Snodgrass and Barber (32)
used three bottom pressure gages forming an equilateral triangle with
sides about 900 ft in 330 ft of water and obtained the direction of
long period swell from the data Bennett, Pittman and Austin (7)
and Bennett (8) described a 6-gage array in the form of a Pentagon
with one gage at the center, which was used off Panama City, Florida
in the Gulf of Mexico at depths of 63 ft and 104 ft Bennett (8)
essentially used the procedure of Munk et al (32) by fitting a
single wave of a particular frequency to the cross-spectrum equations
This may, perhaps, be sufficient to obtain the direction of long
period swell But as Tukey (42) pointed out, in analyzing or
thinking about a computational process involving several layers of
appgoximations, or the propagation of sampling fluctuations through
several layers of tranformations, step-by-step analysis 1s not likely
to be enough and an analysis of the overall process 1s needed

A few other methods have also been reported Nagata (33)
measured orbital motions with electromagnetic current meters and used
it to obtain the directional spectra Ford, Timme and Trampus (20)
used a triset sensor made up of three vertical surface-penetrating
wave staffs located at the corners of a right triangle of side about
5 ft to obtain the three outputs, viz two components of wave slope
and the average wave amplitude at the sensor From these they calcu-
lated the directional spectrum accurate up to 2 harmonics just in the
same way as Longuet-Higgins et al (27) did Simpson (38) had a
similar arrangement but the probes at the apices of the right triangle
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measured orbital velocities 1nstead, and the side of the triangle was
about 3 ft By this arrangement he could obtain the first 4 harmonics
of the directional spectra Suzuki (40) proposed another method of
determining the directional spectra of sea waves using a wave gage

and a wave direction meter which can record X and Y component of

wave force acting on a bottom mounted sphere

There may, perhaps, be many more ingenious ways of obtaining the
directional spectra But 1t seems to the authors that wave gage
arrays might be the most convenient arrangement for collecting data
in a routine way to determine the directional spectra Hence a general
theory for the determination of directional spectra from records of
wave gage arrays and a computer program for it were developed A
brief description of the theory and the results obtalned are described
bel ow The equations for use when the wave gages measure surface
elevations are presented here The detailed development of the
general case will be given 1n a separate report

A THEORY FOR GAGE ARRAYS

The Modes of Analysis

Two modes of analysis are developed - the locked phase method and
the random phase method The locked phase mode of analysis 1s essen-
tially a deterministic approach where the phases of the component waves
are assumed to be fixed Hence the analysls provides both the dis-
tribution of energy with frequency and direction as well as the
distribution of phase angle with frequency and direction In the ran-
dom phase method the phases of component waves are considered to be
random and 1ndependent of each other, hence they average out in the
analysis The locked phase mode of analysis is appropriate to situa-~
tions where phase 1s locked to particular values, such as 1n a wave
tank with flapper The random phase mode of analysis, on the other
hand, 1s applicable to situations where phase changes randomly with
time as 1in narrow band surf or wind waves

Locked Phase Mode of Analysis

The wave surface elevation, q, at a given instant of time t, 1s
considered to be the result of superposition of a large number of
simple harmonic waves each with 1ts own frequency and direction Let
the amplitudes of the component waves be a5, 8y, 89, s ay and
frequencies £9, fl, fq, fm, fy and let them propagate 1n all
directions between -1 and T Let ¢ be the phase and © the direction of
wave Let the coordinates of gage j 1n an array be x, and y_, and let
the wave number be k = 2m/wave length Then the wate% surfacCe eleva-
tion at gage J at time t can be written as

M
qJ(t) = Eg J am(e) cos [ka cos8 +kyJ sin6 ~ 2nft-+¢m(9)] (¢9)
m=0 -1
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The subsequent development will make use of the Fast Fourier-
Transform technique [see Cooley & Tukey (16), Cochran et al (15),
Bergland (9) oi Bingham, Godfrey and Tukey (10)] Let the length 1in
time of the water surface elevation record be T and let the discrete
time interval of recording be At Let T and At be such that N = ==

be a power of 2 One gets the complex amplitude spectrum Am by At
taking the FFT of the surface elevation record a,
N-1
-121mn/N
Am = At Z q, e (2)
n=0

Let the directional distribution be represented as a finite
Fourier series in complex form as below

19,(8)
am(e)e = F (&) N
a +1a’ -
= 2 > 2 Z‘ [(an-+1a;) cosnd +(bn~+ib;) sinn8]  (3)
n=1

To determine the directional spectrum one therefore has to evaluate
the coefficients ag, aa, ap, ai, by, bi etc After going through some
mathematical manipulations, one can come up with the following two
equations for the real and imaginary parts of the FFT coefficients Am
of the surface elevation record for each gage

(&) - * r ok rook oy * *
R(ZAm /TT) = 8,80, (a) AlJ + by BlJ) (a, AZJ + by BZJ)
% r gk * * oy
+ (a3 A3J + by BSJ) + (a4 A4J + by B4J) @)

(&) oLk * * ok "
Sm = -
(28 /TT) a, AOJ + (a; AlJ + by BlJ) (a, A2J+b2 BZJ)
_ * * " t %
(a3 A3J + b3 BSJ) + (a4 B4J + b4 B4J) + (5)
In these equations,
A¥ =2 cos nB J (kD) 6
nj n
and
B*¥ = 2 sin np J_(kD) @
nJ n
where

A = angle of gage J from origin

Jn(kD) = Bessel function of order n with argument
kD 1n which k = wave number and D = distance
of the gage from the origin

Once the coefficients a,, a;, b, and bé are evaluated from the
above equations up to the number of harmonics feasible with the number
of gages, one may obtain the energy and phase by the following rela-
tionships
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|7o) |2 (8)

2
am(e)

tpm(e) arg [F(8)] (9

Random Phase Analysis

Let p(£,8) be the directional spectral density function valid for
£ >0 and -m < 6 <7 Then 1t can be shown, after Pierson and Marks
(35), that the water surface elevation q(x,y,t) at gage J at time t
can be symbolically written as

©
q(x,y,t)=2 I J /p(£,8)dfd® cos (kxcos® + kysinB - 2mft + @) (10)
0 -7

q(x,y,t) here ends up with a Gaussian probability density for any
fixed x,y and t, because of the normal convergence criterion [Brown
(14), Loeve (26), Takano (41)] The cross covariance between water
surface elevations at two gages therefore turns out to be 1ndependent
of phase The directional spectrum may be represented as a finite
Fourier series of the form

a
o
p(£,8) = - * (an cos nb + b sin nb) (11)

i M~z

Here the Fourier series coefficrents a, and bn are to he evaluated
In terms of the co- and quad- spectrum for each pair of gages the
following two equations can be written down

_ = * * * * * -

Co spectrusz = n[aOAOJE (a2A232-+b2B232)+ (a4A4Jz+-b4B4JE) a2)
_ _ * * oy _ * * * *
Quad spectrusz_ ﬁ[(alAlJz-kblBlJz) (a3A3J2+~b3B3J2)+(a5A5]z+b5B5Jz%

~ (13

The co-spectrum and quad-spectrum can be calculated from the FFT co-
efficients on gage J and gage £ The quantities A: and Bz are as below

A* = 2 cos nB J (kD) (14)
n n
and
B* = 2 sin nB J (kD) (15)
n n
where B = angle between gage J and gage £
D = distance between the gages,
k = wave number = 27/wave length and
Jn = Bessel function of order n

The unknowns are the Fourier series coefficients a., ay, bl’ a9,
bz etc There are two equations for each pair of gages and two un-
knowns for every harmonic
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Least square analysis 1s used to make coefficient estimates In
both procedures, a unidirectional wave train will produce analytical
results spread over an angular band width, because only a finite
number of Fourier coefficients can be estimated

COMPUTATION OF DIRECTIONAL SPECTRA

A very general computer program was developed to compute the
directional spectrum, the details of which will be reported subse-
quently The analytical procedure and the scheme of computation was
verified for their validity and workability by computation of known
directional spectra using the scheme The directions obtained out of
the computer checked very well with the known directions of the simu-
lated wave as well as regular waves generated in the laboratory when
the respective data were fed in However, there was considerable
angular spread 1n the results obtained for directions These were due
to leakage, finite length of data and the truncation of Fourier series
representing directional spectra It was also noticed that there was
considerable negative energy showing up 1n the spectra As the nega-
tive energy caused by the presence of one wave may foul up with the
positive contribution from another wave in the system, the presence of
negative energy may affect appreciably the directional resolution
Hence this had to be cured For this a non-negative smoothing function
wch) was applied where

Wo@) = Ry cos?N (%) (186)

in which is a coefficient to be obtained for each harmonic Borgman
(12) has described the procedure to apply this smoothing The smooth-
ing, however, broadens the angular spread of the directional spectrum
and decreases the value of the spectral peak The problem of de-
smoothing the spectra seems to be very important and perhaps Medgyessey
(30) may yield some clues

The scheme of computation developed was used to compare the
directional resolving power of some two-dimensional arrays by simu-
lating a single wave train and comparing the response to 1t from dif-
ferent gage arrays Figures 1 and 2 tabulate the relevant quantities
for comparison The difference between the two tables is that the
quantities in Table 1 are obtained without W, smoothing, whereas the
quantities in Table 2 are smoothed A comparison shows that all the
arrays considered give the direction correctly, but there 1s a dif-
ference in the angular spreads and the values of spectral peaks For
a single wave train the spectrum should have been theoretically a
Dirac delta function, 1 e a spike So, the narrower the angular
spread and the higher the peak, the better the resolving power of the
array By this token, out of the five gage arrays tested, the CERC
array seems to be the best Figure 3 gives the plots of smoothed
directional spectra obtained for different arrays for various 1input
directions
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Analysis of Data From the Pacific Ocean

Figure 4 gives the location map and F1g 5 the gage orientation
for a 5-gage array put up by the Coastal Englneering Research Center
in the Pacific Ocean off Point Mugu, California This array was
specifically desaigned for the determination of directional spectrum
of ocean waves of periods between 7 sec and 25 sec , see Borgman and
Panicker (13) for the design The gages were subsurface pressure
transducers placed 3 feet from the bottom at a water depth of 30 feet
and 1600 feet away from the shore The wave data were analyzed for
directional spectrum using the method developed Some examples of
results obtained are given below

The choice of a frequency band for averaging the spectra was made
by studying Fig 6 which shows the effect of the use of different
frequency bands for averaging When the band width 1s large, the con-
fidence 1nterval of the spectral estimate 1s close, but the spectrum
obtained is rather too smooth, see, for example, the spectrum obtained
when averaging 1s made 1n blocks of 64 FFT coefficients, 1 e , 1n band
width of 64/1024 Hz The spectrum 1s So smooth that 1t does not show
the bimodality indicated by most other cases with block averaging in
narrower frequency band width But when the block averaging is done 1n
too narrow a frequency width, as 1n block averaging of 4 Fourier co-
efficients, the spectrum shows much erratic natuie Tentatively,
therefore, 1t was decided to average 1n blocks of 32 FFT coefficients
and 16 FFT coefficients Figure 7 shows a comparison of the spectra
obtained at the different gages They compare well but there 1s some
discrepancy at peak frequencies Figures 8 and 9 show typical
directional spectra obtained for the locality using the random phase
method of analysis described The spectral densities shown are based
on pressure 1n ft of water and not adjusted for surface elevations
The dominant directions would not be affected, anyway Figure 8 shows
a comparison of the directional spectra obtained at two different
times Notice the arrival of the prominent swell in the morning of
March 28 Figure 9 shows a contour plot of directional spectrum ob-
tained with a block averaging of 16 FFT coefficients, or a frequency
band width of 16/1024 Hz  The typilcal baimodal spectrum of the Pacific
coast can be seen with the ridges showing the strong sea and swell,
both being shown to come generally from the West South West

CONCLUSIONS

The following conclusions may be drawn from the above dis-
cussions

1 Use of wave gage arrays seems to be well suited for the
determination of directional spectra in a routine manner

2 The analytical procedure and the scheme of computation
developed seem to work well for the different situations
tested, viz numerically simulated data, laboratory data
and ocean data
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3 Much more research work is needed 1n almost all aspects
of the problen
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