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ABSTRACT 

A very general model is presented for the probability distribution 
function for wave heights in storms with time-varying intensities  Some 
of the possible choices for functions in the model are listed and dis- 
cussed  Techniques for determining the "equivalent rectangular storm" 
corresponding to a given historically recorded storm are developed  The 
final model formula expresses the probabilities for a random number of 
random length storms each with random intensities 

INTRODUCTION 

The probability law for the largest of N independent, identically 
distributed random variables is covered quite well in statistical and 
scientific literature  Gumbel (195^) provides an excellent survey of 
the main elements of the theory  His book (Gumbel, 1958) gives a very 
complete bibliography and many additional details 

The application of these techniques to determine probabilities for 
the largest ocean wave heights in a sequence of N identically distributed 
and independent waves was developed by Longuet-Higgins (1952)  What mod- 
ifications are necessary to yield maximum wave probabilities for storms 
which vary in intensity with time?  Furthermore, how would one obtain 
probabilities for the maximum wave in a random number of such time- 
varying storms? These questions will be considered in detail in the 
following 

PRELIMINARY ASSUMPTIONS 

The basic assumptions needed in the development are 
(1)  The probability distribution function 

FH(h) = P[H<h] (1) 

for wave  heights   is  known as a function of time-varying   inten- 
sity parameters       Here,  and   in   later deviations,   P[  ] will 
denote  the probability of the event   indicated within  the square 
brackets      The  intensity parameters   in Fu(h)  may be the root- 

n 
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mean square wave height,  a, if the Rayleigh distribution   is 
used 

f.        -h2/a2 , 
Fu(h)    =    V  "e ,      for    h>0    ( (2) 

Hv 

for    h < 0 

FH(h) 

or the  r m s    wave height,  a,   and  the breaking wave height   if 
the clipped Rayleigh distribution   is used 

\  - e"h2/a2 

 _Hg/a2     ,        if    0 <_ h <_ H, 
1   - 2 Va -     -   b (3) 

0 ,       otherwise 

Another possibility   is   the Rice distribution outlined by 
Longuet-Higgins  and Cartwright   (1956) which depends  on   the 
r m s    wave height and a parameter,  e, which   is  determined 
from the spectral   density for the water   level  elevations 

(2) It will   also be assumed that each wave height   is statistically 
independent of the heights of  its  neighbors      This assumption 
is   largely one of convenience      The theory   is  much harder 
without   it      However,   it has been shown  theoretically  that  the 
limiting distribution for the maximum of random variables 
which are what   is  called "m-dependent" of each other   is   the 
same as   the  limiting distribution  for   independent   random vari- 
ables   (Watson,   195*0       The term,  m-dependent,  used here means 
that  random variables   in  the sequence with more than m-1  other 
random variables between them are statistically   independent of 
each other       It seems  reasonable  to assume  that a wave height 
is  at most   interdependent with  the first several wave heights 
occurring before and after   it and essentially   independent with 
waves  further back   into the past or forward   into  the future 
Hence m-dependence seems   reasonable  for wave heights 

Since  the   limiting distribution   is   the same for  independent as 
well  as m-dependent  random variables,  one can  tentatively pre- 
sume the   independence assumptions  for wave heights will   not 
lead to badly   incorrect conclusions       It would appear that  the 
independence assumption would  lead  to a conservative estimate 
of the maximum wave height probabilities,   in any case 
Longuet-Higgins  and others have made  this same assumption  and 
it will  be made here also 

(3) It will   also be presumed  that there   is a known,  or estimated, 
function T(t)   such  that  for any small  time   interval  dt,   the 
number of waves   in  the  interval   is  given by    dt/T(t) 
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A SINGLE TIME-VARYING STORM 

Consider first N   identically-distributed,   independent wave heights, 
each with probability distribution  function,   FH(h,a)       Here a_ denotes 

the set of one or more  intensity parameters which characterize  the 
intensity of the sea conditions       For this situation,   let H,,H2>H,,       , 

HM be  the N waves      The  largest wave   in  the sequence will   be  less   than 

or equal   to h   if,   and only   if,  every one of the waves  are   less  than or 
equal   to h       Thus 

P[max H <_ h]     =    P[H1 <_ h,   H2 <_ h,   H, <_ h, >   H
N 1 "1 W 

But since the wave heights  are assumed   independent of each other, 

P[maxH<_h]     =    P[H, <_ h]   P[H2 <_ h]   P[H, <_ h] P[HN<h]        (5) 

Finally since the N waves  are  taken  to have  the same probability distri- 
bution  function 

iN P[max H <   h] {FH(h,a)}' 

Suppose now that the time-varying storm can be subdivided into steps as 
shown in Table I below 

TABLE I 

FINITE STEP APPROXIMATION TO THE TIME-VARYING STORM 

Ti me Number 
Intensity 

1n te rva 1 Period of 
1 n te rva 1 of Waves Width Waves 

tQ to t, Nl ^ At, Tl 
t, to t2 N2 % At2 T2 
t2 to t. N3 ^3 

At T3 

t  .to t m-1   m N m a 
-m 

At 
m 

T 
m 

The probabilities for the maximum wave in the entire storm will be 
the product of the probabilities for each of the steps 

P[max H £ h] = n. P[max H £h  in the j1 step] 

m N. 

It is being assumed that the waves within a step change intensity 
sufficiently slowly so that, to a fair approximation, they may be taken 
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as being  identically distributed 

It  follows  that  the natural   logarithm of P[max H £ h]   can be written 
m 

log  P[max H < h]    =      jjjj     N     log FH(h,a_ ) (8) 

If 
%    =    Atj/Tj (9) 

is substituted into eq  (8), one gets 

log P[max H < h] =  I, (1/T ) log FH(h,a_ )At (10) 

Now let m->• » and max At ->- 0  By the usual definition of an integral, 

log P[max H < h] = f m [1/T(t)] log F (h,a (t))dt (11) 

It is presumed that the integrand is continuous and uniformly bounded so 
that the stepwise expression in eq  (10) becomes eq  (11) in the limit 

A SERIES APPROXIMATION 

The distribution function Fu(h,a(t)) will be expanded in a power 
n   — 

series about some convenient value h-  Several possibilities for fl- 

are the breaking wave height, H,, (if the maximum wave is probably going 

to be close to breaking), and the "expected" probable maximum, V, (which 
will be defined later)  Thus, let 

log FH(h,a(t)) = bQ(t) + b,(t)(h-h0) + b2(t)(h-hQ)
2 +       (12) 

It is presumed that the distribution function is differentiable to the 
required order so that 

bQ(t) = log FH(hQ,a(t)) 

ir)b,(t)    =   ajj-log FH(h,a(t)), h=hQ (13) 

(2')b2(t)    =   -jdM°9 FH(h,a(t)), h=h() 

etc 

If eq     (12)   is  substituted   into eq     (11), one gets 

log P[max H < h]    -    BQ + B^h-hg) + B2(h-hQ)2 + (14) 

wi th 

B, 
k =    | m  [bk(t)/T(t)]dt, k-0,1,2, (15) 
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The evaluation of BQ, B,, B_    to whatever number of terms is 

desired gives a convenient representation of the probability of maximum 
height as 

2 
P[max H £h] = exp{BQ + B^H-I^) + B2(h-hQ) +   }       (16) 

Presumably the first few terms would be sufficient for most situations 
since the higher order derivatives for most distribution functions 
become negligible as h grows large 

THE COMBINATION OF SEVERAL STORMS 

Another advantage of the representaion in eq  (14) is that it 
facilitates the determination of probabilities for the maximum for the 
combined wave heights in several storms  This is under the supposition 
that the same hQ has been used for all the storms 

Let P [max H < h] denote the probability that the maximum wave in 
i-h 

the  r      storm  is   less  than or equal   to h      Suppose  there are R storms   to 
be considered      Then the probabilities  for the maximum wave  in the com- 
bined set of wave heights would be 

R 
log P[max H <_ h]    =      Z,   log Pr[max H <_ h] (17) 

The function of h expressed by P   [max H <_ h]   can be evaluated from eq 

(11)   for each storm      Alternatively,   let B,     be the B.   value from eq 
i-h 

(15)   for the  r      storm      Then   if the same h0 was  used  for each storm, 
one may write 

logP[maxH<h]    =    J, BQr -i-^B, r(h-hQ) +r^1B2r{h-hQ)2+        (18) 

That   is,   the B.     can be added storm by storm       If B,    is   redefined as 
R Kr K 

JL,B,      then eq     (16)   gives  the distribution  function  for the maximum 

height   in  the combined set of waves 

The above development  is appropriate for hindcasting the probabil- 
ities  for maximum heights   in storms whose fundamental  time-varying 
intensities were measured or are known from other considerations      What 
about probabilities for future periods of time,  say the next hundred 
years?    One could  take the historical   record as  given by Wilson   (1957) 
and determine Bft,   B.,  B„  for each storm      Then  the probability density 

jointly  for   (B0,B.,B?)  could be estimated  from the data and used to make 

the extension  to the future 

This  procedure appears to have grave disadvantages   in   that   (B-.B., 
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B.) are not "intuitive" quantities whose meanings are easy to interpret 

One runs the risk of making mistakes because the unreasonableness of 
values arising apparently from the data are not recognized  A more 
trustworthy procedure would appear to be to shift over to intuitively 
interpretable values 

To fill this need, the concept of an "equivalent rectangular storm" 
will be introduced  A rectangular storm is defined to be one in which 
the intensity, wave period, and distribution function for the height of 
a single wave remain constant during the duration of the storm  The 
"equivalent rectangular storm" corresponding to a given historical 
storm will be that rectangular storm which leads to the same values of 
BQ, B., and B, as the historical storm  The constants for the "equiv- 

alent rectangular storm" will have intuitive meaning in characterizing 
the severity of the storm and in making predictions for the future 

PROBABILITIES FOR A RECTANGULAR STORM 

A special development will be made for the maximum wave height in 
a rectangular storm as related to the intensity parameters a_ and the 
number of waves, N  Let w(h,a) be defined for N independent, identi- 
cally distributed random wave heights, each with distribution function 
FH(h), as 

w(h,a) - N[l - FH(h,a)] (19) 

Then  the distribution  function  for the maximum value may be written 
approximately  (Cramer,   T946,  p    28 6, eq    28 6 2,  Borgman,   1961, 
pp    3296 - 3297,  see eq    (6))  for  large values of N  as 

P[maxH<h]    =    {F(h,a)}N    =   (1   - ^J^-)N    =    e_w(h'^ (20) 

Hence 

log P[max h <_ h]     ~    N[l   -  FH(h,a)] (21) 

Gumbel   (1954,  P     13,  eq    2   11)  defines   the "expected"  largest 
value,   V,  of a vanate to be the value V which satisfies   the equation 

w(V,a)    = N[l   -   FH(V,a)]    =   1 (22) 

This has a physical interpretation in that 1 - F (V,a) is the probabil- 

ity, P[H>V]  Multiplying this probability by N gives the expected 
number of times wave heights will exceed V in the N occurrences 
Hence V is that value such that on the average there will be exactly 
one exceedance in the N wave heights 

From eq  (22) 
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N = [1 - FH(V,a)]"' (23) 

This can be inserted into eq  (21) to give the approximation 

1   -   F  (h,a) 
logP[maxH<h]    *     ]   _  p

n
(v ^ (2k) 

H  — 

Now suppose that, paralleling eq  (12), one expands F,,(h) in a power 
series about hn 

FH(h) = CQ + C,(h - hQ) + C2(h - hQ) + (25) 

Then keeping only the terms to second order 

1   - C. -  C,(h - h  )   - C-(h - h  )2 

logP[maxH<h]     * ! ^ 
1 - CQ- C,(V- hQ) - c2(v- h/ 

wi th 

2 (26) 
Bg + Bj(h - hQ) + B2(h - hQ)

z 

B0 =  (1 - C0)/[l - CQ - C,(V- hQ) - C2(V - hQ)
2] 

Bj  = -C,/[l - CQ - C,(V - hQ) - C2(V - hQ)
2] (27) 

B2    =     -C2/[l   -  CQ  -  C,(V-h0)   -   C2(V-  hQ)2] 

The value of a_,  N,   and V for  the equivalent  rectangular storm will  be 
determined by equating B',   BJ.,   and B^  to the Bn,   B.,  and  B„   respect- 

ively given by eq     (15)   for the historical   storm      Thus,   to second 
order,   the equivalent  rectangular storm will  be producing  the same 
probabilities  for maximum wave heights as  did  the historical   storm 

(28) 

Here,   h.   is   regarded as  a previously selected   (and thus  known)   value 

to expand about      Now the  ratios 

R,     =     (B,/B0)     =    -C,/(.   -  CQ) 

The equations   to be solved are 

D    =     1   -  CQ -  C,(V - hQ)   -  C2(V • •v2 

BQ    =     (1  -  CQ)/D 

B,     =    -0,/D 

B2    =    -C2/D 

R2    =     (B2/BQ)     -    -C2/(l   -  CQ 

(29) 
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can be computed from the values of Bn,  B.,  and B„       If R.   and R_  are 

substituted   into the expression  for B-,  one gets 

BQR2(V - hQ)2 + BQR^V - h0)  +(BQ -   1)    =    0 (30) 

Hence V can be determined from eq     (30)  as a quadratic solution 

Now Fu(h,a)   is   typically a monotone decreasing  function of storm 
n ~" 

intensity for fixed h  That is, a higher storm intensity normally 
means that there is a larger probability of exceeding the fixed h value 
or a smaller probability of being less than or equal to that h value 
But eq  (23) states that 

FH(V,a) = 1 " J5" (3D 

Hence, the storm intensity can be determined from the value of N which 
is usually known, approximately at least, from other considerations 
If the intensity of a is a vector, reasonable interrelations between 
the components of a_ must be imposed 

In summary the computational procedure for determining V and a_ 
for the rectangular storm is as follows 

(1) Calculate R. and R from eq (29) 

(2) Determine V from eq  (30) 
(3) Compute a_ from eq  (31) and the value of N 

PROBABILITY GENERATING FUNCTIONS 

In developing the probabilities for the maximum height in a 
random number of random length and random intensity storms, it will be 
natural to introduce various probability generating functions  A 
probability generating function for a random variable N is defined to 
be the infinite series 

GN(s) = nI0P[M=n] sn (32) 

These functions have closed form for many probability   laws   (Borgman, 
1961.   P    3305,  eq     (21)   -   (27))       Two examples of particular usefulness 
are the probability generating functions  for the Poisson and the 
negative binomial  probability  laws   (Williamson and Bretherton,   1963, 
PP    9 -  10) 

Pofsson      P[N=n]    =    e~XXn/n' (33) 

GN(s)    =    exp[-X(l-s)] (3A) 

Negative binomial      P[N=n]    =    C^"')  pr qn (35) 
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GN(s)  = pr(l " qs)"r, p + q -  1 (36) 

The mean and variance of the Poisson is X  The corresponding mean and 
variance of the negative binomial are respectively 

mean = rq/p (37) 

variance    =    rq/p (3°) 

where p + q    =     1 (39) 

The negative binomial parameters, p, q, and r, can be estimated from 
2 

the mean N and variance (N) = s by the method of moments as 

p- = N/s2 (40) 

3 = 1 - p (41) 

f = NpVq (42) 

PROBABILITIES  FOR A RANDOM LENGTH STORM 

Suppose a  rectangular storm has  a  random length N and  fixed   inten- 
sity,   a_     What   is  the probability   law for  the maximum wave height   in  the 
storm?    Let GM(s)   be the probability generating functions   for N 

By eq     (21),   the approximate probability  law for H given a particu- 
lar value of N = n   is 

Ptmax H < h  |   N=n]    «    {exptl  -  Fu(h,a)]}n (43) — n       -" 

Then  for a random number of waves 

P[max H < h]     ~      f    P[max H < h   |   N=n]   P[N=n] 

-    nl0 P[N=n]  {exP[l  -  FH(h,a)]}n (44) 

=    GN(exp[l  -   FH(h,a)]) (45) 

A comparison of eq  (44) with eq  (32) will justify substituting the 
exponential for the argument s of the probability generating function 

In practice one could use the guessed values of R" and s2 together 
with the negative binomial probability law to determine the function 
G..(s)  Alternatively another probability generating function could be 

used 

PROBABILITIES  FOR RANDOM LENGTH  AND  RANDOM   INTENSITY  STORMS 

If a_ is  also  random,   then eq     (45)   must be  regarded as a probability 
given   that     intensity = a      Let 
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f. (a) = probability density for a 

Then 

P[max H < h]    = P[max H < h   |   _[_=a]   f, (a)   da_ •.-SA   '| 

r GN(exptl-FH(h,a])   f, (a)  da (46) 

PROBABILITIES   FOR A RANDOM NUMBER OF RANDOM LENGTH 

AND  RANDOM   INTENSITY STORMS 

The final  complication  is  to introduce a probability  law for the 
number of storms,   K, which may occur  in  the time   interval   for which  pre- 
dictions  are made      Let GK(s)   be the  corresponding probability generating 

function       By  the   identical   same argument   leading  to eq     (45), 

P[max H<_h]    =    k|Q P[max H <_ h  |   K=k]   P[K=k] 

kfo   ) f G
N
(expt'~FH(h,-)])  fl(-J  dT p[K=k]       (47) 

1,-co — J 
P[maxH<h]    =    GK    j     GN(exp[l-FH(h,a_)])   f,(a)da (W) 

The number of waves   in  a given storm may depend on  a_      Hence  the 
formula  can be made a  little more general   by   introducing the conditional 
probability generating function for N given a_     This  final  version of 
the formula would be 

'[maxH_h]    =    GJ  j     GN|g   (exp[l-FH(h,a)])   f, (a)   da (49) 

SOME FINAL COMMENTS 

(1) The application of the above formula will obviously require a 
digital computer and detailed analysis of the historical data for the 
particular location of interest 

(2) The negative binomial appears to be the best choice for the 
two probability generating functions although, at least for Gulf of 
Mexico hurricanes, there is some basis for using the simpler Poisson 
probability generating function for G,.(s) 
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(3) The possible choices for Fu(h,a) were discussed at the begin- n   — 
ning of the paper  Without more detailed information, the Rayleigh 
distribution appears to be as good a choice as any (Goodnight and 
Russell, 1963) 

(4) The choice of f.(a) would have to depend strongly on the analy- 

sis of historical data or on meteorological considerations  Hence it is 
hard to make a guess as to a reasonable choice  However, a form of the 
gamma density would seem to be a good first guess 

(5) In this whole discussion, the randomness of wave period has 
been ignored  A more adequate model would certainly include this source 
of variation 

(6) An alternative approach to the maximum wave height might be 
made through the statistical theory of maxima and minima of a random 
function  Unfortunately, when such an approach is attempted, theoreti- 
cal difficultires arise very quickly  Information on wave crest eleva- 
tion probabilities can be obtained, however, by the random function 
type of analysis 
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