CHAPTER 16

APPLICATION OF WAVE DIFFRAGTION DATA

Abstract

By considering separately the two termsof the Sommerfeld solution of wave diffraction behind a semi-infinite breakwater, the influence of the wave reflection from the structure can be evaluated The diffraction coefficient at any point can be obtained from a graph or table for full, partial or no reflection by the simple addition of two coefficients From the similarity of the energy-spreading process to the dam-burst problem, it was found that wave heights decreased consistently along the near circular crests for all distances from the breakwater tip For a workable range of incident angle and distance from the breakwater, wave heights could be defined by this arc distance from the shadow line expressed in wave lengths These relationships have been verified experimentally for all but the smallest incident angle in proximity to the breakwater This can be likened to the dam model in which the dam is moving too slowly to permit normal spreading.

The several theoretical solutions for the breakwater gap, when graphed on the same basis, are shown to be very similar, diverging only for small incident angles New parameters are provided which greatly simplify the presentation of information The scatter of past experimental data precludes the verıfication of this theory and indicates the need for further tests

INTRODUCTION

Theoretical solutions have been avallable over many years for computing wave helghts behind breakwaters These are based upon the diffraction process in optics and hence have given rise to the term "shadow zone" for the area behind the structure The relevant equations can be solved by computer and thus results, to apparent high degrees of precision, are becoming available. This tendency perhaps is not commensurate with the inaccuracies inherent in the wave data of coastal engineering problems.

This paper attempts to simplify the presentation of information by an averaging process, thus reducing the number of variables. The modest error so introduced should not influence the accuracy of general design procedures.

[^0]Diffraction of ocean waves can be divided to three main topics, namely: (a) the semi-infinite breakwater, in which the water zone beyond the breakwater is considered to be unlımıted as far as wave energy supply is concerned
(b) the breakwater gap, in which two structures extend to less than five wave lengths apart, so limiting the wave energy avallable for spreading into the one or two shadow zones so formed
(c) the island or offshore breakwater, in which waves diffract to leeward of the structure from elther end

Only cases (a) \& (b) are discussed in this paper, with the followng assumptions applying: (1) unıform depth of water throughout, inferring a constant wave length for any specific wave period
(ii) breakwaters which have a width that can be considered thin in respect to the wave length If the structure or land mass has a sizable width the diffraction solution should be applied from the leeward or shadow-zone face.
(1ıl) small amplıtude waves in keepıng with the linear theory, although experımental verıficatıon is avallable for relatıvely steep waves

SEMI-TNFINITE BREAKWATER

The general case is illustrated in Figure 1 in which it is seen that a train of waves is approaching at an angle θ to the breakwater Thus the orthogonals of the incident waves are angled θ to the structure and the one passing through the breakwater tip will be considered the limit of the shadow zone and wall be termed the "shadow 11ne". Wave heights only in the shadow zone are considered in this paper. The location of any point P will be defined by elther the polar coordinate system ($\alpha, R / L$) or the circular arc system ($S / L, R / L$) As wlll be seen later, this latter system can be reduced to S / L alone, with little loss of accuracy.

It can also be observed in Figure 1 that the waves reflected from the breakwater also diffract whilst they proceed seawards Before entering the shadow zone they must spread through an angle of $360^{\circ}-2 \theta$, so that to supply energy at point P they have a diffraction angle of $360^{\circ}-2 \theta+\alpha$ Outside the shadow zone the interaction of the reflected waves with the incident waves creates a short-crested system, the detalled characterıstics of which are avallable(1) Immediately outside the shadow zone the two waves are practically aligned and, although a slight phase difference may be present between the incident and the reflected waves, heights in excess of those of the incident wave are theoretically possible As noted already, this zone is not treated herein

It can be readily accepted that the influence of the reflected wave in the shadow zone is small, but no insignificant for the case of 100% reflection. Inspite of the tendency to design breakwaters for the fullest dissipation of waves, diffraction theory in current use is based upon 100% reflection In proximity to the breakwater tip, where the reflection component is greatest its correct assessment could result in worthwhile economies of design

THEORETICAL SOLUTION

The Sommerfeld ${ }^{(2)}$ solution of optical diffraction was applied to water waves by Penney and Price (3)(4). The basic equation with the definition of α_{1} and α_{r} as in Figure 1 , can be written as follows:
$F(R, \alpha)=f(u 1) \cdot \exp \left(-1 k R \cos \alpha_{1}\right)+f(u 2) \exp \left(-1 k R \cos \alpha_{r}\right)$
where $u l=-\sqrt{8 R / L} \sin \left(\alpha_{1} / 2\right)$
$u 2=-\sqrt{8 R / L} \sin \left(\alpha_{r} / 2\right)$
$\mathrm{k}=2 \pi / \mathrm{L}$
$f(u)=\frac{1+1}{2} \int_{-\infty}^{u} \exp \left(-1 \pi u^{2}\right) d u \quad \ldots \ldots \ldots$..............
$f(-u)=\frac{1+1}{2} \int_{-\infty}^{-u} \exp \left(-1 \pi \pi u^{2}\right) \cdot d u$
$f(u)+f(-u)=1$
The diffraction coefficient K is defined as

$$
\begin{equation*}
K=\frac{\text { diffracted wave he1ght }}{\text { incident wave height }} \tag{8}
\end{equation*}
$$

The numerical value of K is equal to the modulus of equation (1)
so that $K=|F(R . \alpha)|$
In this event the second term of the RHS in equation (1) can be written $f(u 2) \exp \left(-1 \mathrm{kR} \cos \overline{360^{\circ}-\alpha_{r}}\right.$)
which represents the diffraction of the reflected wave, from its orthogonal through the breakwater tip around to the polar direction of point P. The first term of equation (1) represents the fraction of the wave height resulting from diffraction of the incident wave from the shadow line. Thus

$$
K=|F(R . \alpha)|=\text { incident term }+ \text { reflected term. }
$$

The generalised form for equation (9) is thus

$$
\begin{equation*}
K=|f(u) \exp (-1 k R \cos \alpha)| \tag{11}
\end{equation*}
$$

In which α can be measured from the shadow line to give the diffraction coefficient for the incident wave, and from the tip orthogonal of the reflected wave ($360-2 \theta+\alpha$) to give the coefficient for the reflection component. The two values are added to give K for the case of 100% reflection. For partial reflection a proportion of the second component should be used.

Separating the components in the above manner introduces a slight error for incident angles $\theta \leq 45^{\circ}$, but this is on the conservative side and it occurs only near the shadow line and for small radial distances as indicated in Figure 2.

Larras (5) has recently made a similar approach to the prob1em, by solving the sine and Fresnel functions from the geometry of the point P in terms of orthogonal axes and the use of Cornu spirals. In this case also the diffraction coefficient is the addition of an incident and reflected term, the latter being modified according to the degree of reflection.

POLAR CO-ORDINATE SYSTEM

Equation (11) can be graphed as in Figure 3, or tabulated as in Table I. The values of K representing incident and reflected components are read from the angle α as previously indicated and then. added. For example, with $\theta=60^{\circ}, \alpha=300$ and $R / L=10$ we have from Figure 3: $360-2(60)+30=270^{\circ}$, so that K (incident) $=0.10$ and $K($ reflected $)=0.03$, giving $K(100 \%$ reflection $)=0.13$, K (zero reflection) $=$ 0.10 and $K(50 \%$ reflection $)=0115$.

The respective values as obtained from Table I are as follows:

$$
\begin{aligned}
& \mathrm{K}\left(\alpha=30^{\circ}\right)=0.096 \\
& \mathrm{~K}\left(360^{\circ}-2 \theta+\alpha=270^{\circ}\right)=\mathrm{K}\left(360^{\circ}-270^{\circ}=90^{\circ}\right)=0.036 \\
& \mathrm{~K}(100 \% \text { reflection })=0.132
\end{aligned}
$$

In reading table I it is sufficient for the reflection term to use $2 \theta-\alpha$, which in this case $=120^{\circ}-30=90^{\circ}$.

It is noteworthy that with no reflection the wave height along the shadow line ($\alpha=0^{\circ}$) remains static at 0.5 . Also, on the lee-side of the breakwater, where $\alpha=\theta$, it is found that the incident and reflection components are each 50% of the total. This is significant when the latter might not exist at all due to adequate dissipation on the breakwater.

GIRCULAR ARC SYSTEM

Consider the wave at the shadow 1 ine just after it has reached the the breakwater. At the crest alignment two distinct water levels attempt to exist simultaneously, that of the wave crest and that of the still-water level inside the shadow zone. This instantaneous

TABLE $1-K^{\prime}=\left|f(u) \exp \left(-2_{\pi} I(R / L) \cos (\alpha)\right)\right|$

	K x 1/1000									
	1	2	3	4	5	6	8	10	15	20
0	500	500	500	500	500	500	500	500	500	500
2	476	466	459	453	448	443	435	428	413	402
4	453	435	422	411	402	393	379	367	344	325
6	431	406	388	373	361	350	332	317	288	266
8	411	379	357	340	325	313	292	275	244	222
10	392	355	329	310	294	280	258	241	210	188
12	373	332	304	283	267	253	230	213	182	162
14	356	311	282	260	243	229	207	190	161	141
16	340	292	262	240	222	208	187	170	143	125
18	325	275	244	221	204	191	170	154	128	112
20	310	259	228	205	189	175	155	140	116	101
25	278	225	194	173	157	145	127	115	94	82
30	251	197	168	148	134	123	107	96	79	69
35	228	175	147	129	116	107	93	83	68	59
40	208	157	131	115	103	94	82	73	60	52
45	191	142	118	103	92	84	73	66	54	46
50	176	130	107	93	84	77	66	59	49	42
55	164	120	99	86	77	70	61	54	44	39
60	153	111	91	79	71	65	56	50	41	36
65	143	104	85	74	66	60	52	47	38	33
70	135	97	80	69	62	57	49	44	36	31
75	128	92	75	65	58	53	46	41	34	29
80	122	87	71	62	55	51	44	39	32	28
85	116	83	68	59	53	48	42	37	30	26
90	111	79	65	56	50	46	40	36	29	25
95	107	76	62	54	48	44	38	34	28	24
100	103	73	60	52	46	42	37	33	27	23
105	99	71	58	50	45	41	35	32	26	22
110	96	69	56	49	43	40	34	31	25	22
115	94	67	54	47	42	39	33	30	24	21
120	91	65	53	46	41	38	32	29	24	21
125	89	63	52	45	40	37	32	28	23	20
130	87	62	51	44	39	36	31	28	23	20
135	86	61	50	43	39	35	30	27	22	19
140	84	60	49	42	38	35	30	27	22	19
145	83	59	48	42	37	34	29	26	22	19
150	82	58	48	41	37	34	29	26	21	18
160	80	57	47	40	36	33	29	26	21	18
170	80	56	46	40	36	33	28	25	21	18
180	79	56	46	40	36	32	28	25	21	18

differential can be likened to the dam-break problem, in which the vertical wall of water gives way to a sloping surface which flattens swiftly with time

The major differences in these two phenomena are the element of time and the supply of energy In the case of the dam-burst the slope at the channel alıgnment varies with time, whereas in diffraction the wave crest is changing position and would appear to maintain a fixed profile In respect to energy supply, this is limited in the dam case by the volume of water available in the resevolr, but appears unlimited for the semi-infinlte length of the wave crests outside the shadow zone of the breakwater. This comparison suffers many disabilities, but it is felt significant that the water at the dam site remains constant at $4 / 9$ of the original depth, whilst the energy level remains constant In an apparaently similar manner the energy transfer in diffraction, for the incident wave alone, maintains a constant depth along the shadow line. The order of the depth changes are vastly different and crest to trough measurements are involved rather than SWL, so that strict equality cannot be expected

From the above generalisations it was surmised that along a wave crest, which in the shadow zone could be accepted as clrcular in plan, a constant wave-height profile should exist for all its positions from the breakwater. This distance measurement from the shadow line is designated an arc length (S/L) which could thus replace the $(R / L, \alpha)$ coordinate system previously used for defining positions in the shadow zone. (See Figure 1).

FIG 4 K VALUES FOR R/L $=3$ AND FULL REFLECTION.

FIG 5 K AVERAGED FOR $60^{\circ}=\theta=150^{\circ}$ AND FULL REFLECTION

Curves were drawn from the Sommerfeld solution in the circular arc system for values of $R / L=0.5$ to 10 and $\theta=45^{\circ}$ to $180^{\circ} \mathrm{A}$ typical set of results is displayed in Figure 4, which shows the curves for the various angles θ and the specific value of $R / L=3$. An average curve was drawn for $\theta=60^{\circ}$ to 150°, as indicated, for each R / L value and then collected in a single diagram (as Figure 5). From this a single curve appeared acceptable to represent R / L values from 3 to 10 .

The errors so introduced by this averaging procedure can be ascertained from the two figures. As seen in Figure 4, that due to averaging θ occurs mainly in the smaller θ values, for example a malmum of $K=+0.04$ for $\theta=60^{\circ}$ at $S / L=3$ for the case of $R / L=3.0$. In Figure 5 an average line (not drawn) involves a maximum error of about ± 0.035 at $S / L=2.0$, or 3% of the incident wave. These error values are not strictly cumulative since they occur at different S / L values and the first one quoted is for the 60° incident angle only The average error for θ larger than this was in the order of ± 0.01.

Figures 4 and 5 represent full reflection conditions. Similar graphs can be obtained for zero reflection, resulting in the curves of Figure 6 This figure can be used instead of Figure 3 or Table I with
the slight loss of accuracy indicated To find the relevant S / L value an arc should be drawn through the point of interest P, centered on the breakwater tip, and the length along it from the shadow line measured in wave lengths. This can be accomplished on any harbour layout where constant depths can beassumed

EXPERIMENTAL VERIFICATION

Abstract

(6) conducted experiments which avoided reflection from the breakwater Their results, which were presented in $x-y$ coordinates, were transformed to the arc length system and are displayed in Figure 7 Agreement is clearly shown with the zero reflection curve.

Tests conducted by Lim ${ }^{(7)}$ at the Asian Institute of Technology were concentrated on the region within three wave lengths of the breakwater tip Incident angles of $45^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$ and 180° were examined and measurements were made for $R / L=1,2$ and 3 at intervals of either $7 \frac{1_{2}^{2}}{}$ or 15° from the shadow line The main elements of the equipment are shown in Figure 8, where it is seen that the incident angles were varied by changing the position of the breakwater. Reflection from the exposed side of the breakwater is obviously excluded.

Waves were measured by a step wave probe to an accuracy of $\pm 1.0 \mathrm{~mm}$. The range of wave heights and wave periods for all tests are 11sted in Table II where it can be noted that periods ranged from 05 to 0.7 seconds and incident wave heights from 19 to 36 mm This latter measurement was an average of values taken at 3 points in the approach channel (See Figure 8) to obviate the resonant cross-waves established there.

Results from runs with similar waves presented some scatter, as exemplified in Figures 9 and 10 and observed in Table II. This would have arisen from the probe error, incomplete dissipation of the waves at the basin boundary, and long period surge of the basin Averages of the several runs are listed in Table II for each α and R / L value (probe location), and graphed for each θ in Figures (11 to 15). For angles of 60° and 90° the experimental data agree very well with the theory for zero reflection. For angles 120° and 180° the experimental points are a little low, but for 45° are high, in all cases increasing with distance inside the shadow zone. This difference decreased as R/L approached 3. The maximum error was in the order of 4% of the $1 n-$ cident wave height. Since the theory is conservative for $\theta \geq 60^{\circ}$, based upon this experimental evidence, it is suggested that Figures 3 and 6 or Table I can be used with confidence, by computing an appropriate allowance for reflection.

For the special conditions of $\theta<60^{\circ}$ and $R / L<3$, an addition of 0.1 should be made to the K evaluated above The previous comparison of wave diffraction to the dam-burst problem may help explain this deviation from the theory. When θ is small the wave has insufficient room to spread properly. This situation is similar to a moving dam whose velocity does not permit the formation of the water surface profile commensurate with a sudden dam collapse

FIG 8 TEST EQUIPMENT

rable II Results of

4			ダダッニニッ	
＝				
a			ダずき゚さ	
				$3{ }^{\text {B }}$
$\triangle \rightarrow$	\rightarrow	\cdots	\cdots	

FIGS 11, 12, 13 THEORETICAL AND EXPERIMENTAL VALUES OF OIF. FRACTION COEFFICIENT (K), SEMI-INFINITE BREAKWATER, NO REFLECTION

FIGS 14, 15 THEORETICAL AND EXPERIMENTAL VALUES OF DIFFRAC TION COEFFICIENT (K), SEMI-INFINITE BREAKWATER, NO REFLECTION

FIG 16 INFLUENCE OF GAP WIDTH ON DIFFRACTION COEFFICIENT

BREAKWATER GAP

Where two breakwaters are aligned and full reflection is realised from each, the waves in each shadow zone are comprised of the incident wave and the two reflected waves Since the crest curvature of one of these is not centered on the breakwater tip of the incident and other reflected wave, the resultant wave height measured along the arc length fluctuates about the smooth curve of the semi-infinite breakwater solution. This is illustrated in Figure 16, where it can be observed that the deviations increase as the gap width decreases. Down to the value of $B / L=5$ the semi-infinite breakwater solution can be used without great loss of accuracy. Where no reflection occurs such undulations are not present as noted in the experiments reported herein, which are essentially half a breakwater gap without the reflection component.

APPLICATION OF SOMMERFELD'S SOLUTION ${ }^{(4)}$

It can be shown, by graphing values of K and R / L in Table I, that the wave height is reduced in proportion to ($R / L)^{\frac{h}{2}}$. This suggests a parameter $K \sqrt{R / L}$ for combining radial and arc distance influences. It is also convenient to centre the polar coordinate at the mid-point of the breakwater gap. In the knowledge that for $R>5 B$ the value of $K \sqrt{R / L}$ is essentially constant for any α a simple series of graphs can represent conditions anywhere in the protected basin. An example of this is Figure 17, which is drawn for $R / L=20$, the largest probable radius to be encompassed In the absence of reflection, the fluctuations exhibited in Figure 17 will not be present, so that averaging them should not involve undue error in a prototype situation Figure 18 results for $\theta=90^{\circ}$ and $B / L \leq R / L \leq 20$, in which curves are grouped into two categories. $R / B=1$ and $R / B>1$. For gaps smaller than $2 L$ the single curve (full line) represents both cases of R / B

The above simplifications lead to a maximum error in $K \sqrt{R / L}$ of ± 0.3 at the maxima and minima of the undulations (See Figure 17). The average deviation is in the order of ± 0.2. Since reflection is likely to be much smaller than 100% these errors appear acceptable. Although Figure 18 applies only to $\theta=90^{\circ}$, other angles can be treated by the method suggested by Blue and Johnson $(8)(9)$, in which the equivalent width B^{t} is used for the angle θ (See inset of figure).

MORSE-RUBENSTETN SOLUTION

For gap widths of 3L and less an exact solution in optics has been derived by Morse and Rubenstein (10), and applied to water waves by Carr and Stelzriede (11), to which the reader is referred for the relevant equations. The computation procedure is tedious, but a graphical solution is provided in Reference No (11)

Using the previously derived parameter $K \sqrt{R / L}$, graphs for $B / L_{0}=0.5,10$ and 20 are presented in Figure 19 for incident angles of $30^{\circ}, 60^{\circ}$ and 90° These are applicable to zones where $R>B$

LACOMBE 'S SOLUTION

Lacombe ${ }^{(12)}$ has derived an approximate solution which is based upon a polar coordinate system centered on the mid-gap point It applies to $R>B$ and $1 s$ best used to determine the maxima values in the fluctuations previously discussed For $B \geq 2 L$ the solution $1 s$ close to that of Morse-Rubenstein.

COMPARISON OF SOLUTIONS

For the smaller gap widths ($B \leq 2 \mathrm{~L}$) a direct comparison of the above mentioned solutions is possible As seen in Figures 20 and 21 the solution of Penney and Price ${ }^{(4)}$ is extremely close to that of Morse and Rubenstein, for the incident angle of 90° and to the limit of α to which the latter is carried For this same normal incidence the Lacombe approximation is sensibly the same It is not until $\theta=30^{\circ}$ that major deviations occur between the Lacombe and Morse-Rubenstein solutions. The latter should be preferred for design purposes because of its conservative tendencies

EXPERIMENTAL EVIDENCE

Blue ${ }^{(13)}$ carried out extensive model tests on diffraction behind a breakwater gap His measurements were made on a square grid system, which had to be converted to the polar coordinate system. Only those results could be used, therefore, which approximated the B / L value for the theory. The points plotted in Figures 22 and 23 suffer extreme scatter, which is probably due in part to the varlety of depth/wavelength and helght/length ratios used, both of which would have influenced the degree of reflection from the vertical walls of the model breakwaters The results as presented cannot be accepted as verification of the theoretical curves, so that further practical work appears necessary. In order to exclude the reflect on component, tests similar to those reported herein are indicated, the only difference being the width of the approach channel in respect to the wave length. No drastic differences in wave attenuation should be expected, since the only change is the limited crest length from which the diffraction energy is supplied

CONCLUSTONS

SEMI-INFINITE BREAKWATER

1. The theoretical value of diffraction coefficient for a semiinfinite breakwater can be divided for engineering purposes into two components, arising respectively from the incident and reflected waves.

FIG 21
COMPARISON OF THE THEORETICAL SOLUTIONS OF DIFFRACTION COEFFICIENT FOR BREAKWATER GAP

FIG 23 EXPERIMENTAL RESULTS FROM BLUE (I3) FOR B/L=25 AND RANGE OF R/L
2. The diffraction coefficient from (1) above can be presented in a simple table or graph which involves an angular measure and distance from the breakwater tip. The incident and reflection components determined from the angle through which diffraction takes place, are addıtive.
3. The sensibly constant profile along the nearly circular crests of the diffracting waves permits a simplified presentation of diffraction coefficient for arc distances from the shadow line, which covers a wide range of incidence angle and radial distance Various degrees of reflection from the breakwater can be incorporated into the diffracted wave height
4. Experimental evidence confirms the reflection component approach. $I_{t_{o}}$ also verifies the zero reflection solution for incident angles from 60° to 150° inclusive. For lesser angles an addition of 0.1 in the diffraction coefficient is recommended.

BREAKWATER GAP
5 The various theoretical solutions for wave diffraction behind a breakwater gap give very similar results for incident angles approaching 90° Only when the angle is less than 45° do deviations become pronounced.
6. The simplest presentation of data results from the use of the parameter $K \sqrt{R / L}$, together with a polar coordinate system based upon the incident orthogonal passing through the mid-point of the gap.

7 Results from past experiments on the breakwater gap contain too much scatter to verify the theory, indicating the need for further work in this direction.

ACKNOWLEDGEMENTS

During the course of this research the junior author was in receipt of a scholarship at the Asian Institute of Technology, formerly the SEATO Graduate School of Engineering. The wave probe was kindly lent by the University of Western Australia, where it was developed by the senior author.

REFERENCES

(1) Fan S.H., J.E. Cumming and R.L. Wiegel "Computed Solution of Wave Diffraction by Sem1-Infinıte Breakwater" Universıty of California, Berkeley, Tech. Rep. HEL-1-8, 1967.
(2) Sommerfeld A. "Mathematische Theorie der Diffraction" Math. Ann. No.47, 1896, 317-374.
(3) Penney W.G and Price A.T. "Diffraction of Sea Waves by Breakwaters" Directorate of Mascellaneous Weapons Development. Technical History No. 26, Artificial Harbour, Sec.3D.
(4) Penney W.G and Price A.T. "The Diffraction Theory of Sea Waves by Breakwaters" Phil. Trans. Roy. Soc. (London) A244, 1952, 236-253.
(5) Larras J. "Diffraction de la Houle par les Obstacles Rectilignes Semı-indefınis sous Incidence Oblıque" Cahıers Océanographıques 18, 1966, 661-667.
(6) Putman J.A. and R.S. Arthur "Diffraction of Water Waves by Breakwaters" Trans Am. Geoph. Un 29, 1948, 481-490.
(7) Lim T.K. 'Wave Diffraction" M.Eng. Thesis, Asian Institute of Technology, Bangkok, Thailand, 1968.
(8) Blue F.L. and J.W. Johnson "Diffraction of Water Waves Passing Through a Breakwater Gap" Trans. Am Geoph. Un. 30, 1949, 705-718.
(9) Johnson J.W. "Generailsed Wave Diffraction Diagrams" Proc. 2nd Conf. Coastal Eng., 1952, 6-23.
(10) Morse P.M. and P.J. Rubenstein "The Diffraction of Waves by Ribbons and Slits" Physical Review No.54, 1938, 895-898.
(11) Carr J.H. and M.E. Stelzriede "Diffraction of Water Waves by Breakwaters" Gravity Waves, U.S. Natl Bur. Stds., Circ. No.52l, 1952, 109-125.
(12) Lacombe H. "The Diffraction of a Swell. A Practical Approximate Solution and its Justification" Gravity Waves, U.S. Nati. Bur. Stds., Circ. No.521, 1952, 129-140.
(13) Blue F.L. "Diffraction of Water Waves Passing Through a Breakwater Gap" Ph. D. Thesis in Civil Engıneering, University of Calıfornıa, Berkeley, 1948

[^0]: ${ }^{(1)}$ Professor of Coastal Engineering, Asian Institute of Technology, Bangkok, Thalland.
 (2) Graduate Student, AIT, Bangkok, Thailand

