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ABSTRACT

The wave transformation ingide surf zone 1s treated
analytically in this paper under the several appropriate
agsumptions. The theoretical curves computed numerically
have a consistant agreement with the experimental data in
the case of wave transformation on a horizontal bottom. On
the other hand, 1n the case of wave transformation on a uni-
formly sloping beach, the analytical treatment gseems to be
inadequate to clarify the actual phenomena. Begides them
the numerous data on wave height attenuation and others
are presented in the graphical forms.

INTRODUCTION

The phenomena of wave transformation i1n the surf zone
hags been a matter of great interest to the coastal engineers,
therefore the numerous invegtigators have treated ?gswggme
problem on the basigs of the appropriate assumptions.* " The
assumptions are such that the wave has 1ts critical heiaght as
a progressive wave at each depth of water, or that the wave
height decreases exponentially with the distance of wave prop-
agation from the breaking point. Thegse foregoing treatments
seem to be inadequate to clarify the phenomena of wave trans-
formation inside the surf zone, thus more reasonable method
18 required to be applied. The aim of this paper is to
present an approach to the stated problem on the basis of the
analytical and experimental treatments.

THEORETICAL ANALYSIS

In the analysis on the attenuation of wave height 1in
the surf zone, the following assumptions are introduced as
the bagis of the analytical treatment:

a) The 2nd order approximation of solitary wave theory
introduced by LaitorPis adopted to express the fea-
tures of the broken waveg progressing in the surf
zone, That 1s, the wave profile, wave celeraity,
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and horizontal component of water particle velocity
are given by the following equationg respectively:

n=H sech® /48.’(H+ﬁ) (x—-ct) (1)

= /4R (1+ H/R) (2)
u= /—E[?- '—?-'g 3—9 25+€—,)+(€~){7r+2— (25 Z)B (3)

where Y is surface elevation meagured from the still
water level, H wave height, A water depth, ¢ wave
celerity, w horizontal component of water particle
velocity, &2 vertical axis taking upward from the
st111l water level, and = horizontal axis taking
along the still water level,

b) The wave is attenuated by the effects of turbulence
and bottom friction, The effect of percolation on
the attenuvation of waves is negligibly small,

¢) The friction coefficient has the same value in the
entire region of surf zone,

d) The turbulence is 1sotropic and decreases exponen-—
t1ally according as the increase of showeward dis-
tYance measured from the breaking point.

ENERGY DISSIPATION DUE TO BOTTOM FRICTION

In an oscillatory flow the shearing stress at bgttom may
be expressed approximately by the following equatlon

T =G (4)

where T, is shearing stress at bottom, C} friction coefficient
and ¢ amplitude of the average velocity in depth, i .

The energy dissipation by bottom friction per unit width,
per unit time, dE%@t » 18 given by

. 3
R TR

= (3H/AR)(Fi+H) (6)

ENERGY DISSIPATION DUE TO TURBULENCE

where

When the wave breaks at a certain point, a great amount
of air bubble is entrained into the water, causing a large
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scale disturbance 1n flow, Such kind of digturbance seems
to take the main role of energy dissipation at least at the
1niti1al stage of wave transformation in the surf zone. By
the assumption that the turbulence ig statistically isotropic,
the energy dissipation due t0 turbulence per unit volume, per
unit time, is given by

_ N

W= ISH 3 (7)

where W 1s the rate of energy dissipation due to turbulence,

Jcoefficient of fluid viscosity, ¥’ fluctuation of horizontal
velocity component, and A_ microscale of turbulence or dissi-

pation length.

The kinetic energy of turbulence seems t0 be inversely
proportional to the distance from the breaking point. There~
fore 1t may be possible to express the decay of turbulence ag
follows:

W o< exp(-Bx/L) (8)

where indicates a damping coefficient of turbulence, X dis-
tance measured from the breaking point and L. wave length.
Thus the dissipation length may be expressed by the following
relation:

2 _Jovut  _jovi® vT
du> dur A
at c:Zx

Here we assume that the mixing length, £ , in the Prandtle's
hypothesis 1s proportional to the height above the bottom,

' _p d
u =L =x(z+h)4% (10)

where X 1s the Kdrmdn's universal constant, A water depth,

U horizontal component of particle velocity and 2 axis taking
upward from the gtill water level. Therefore we obtain the
following expressions on the rate of energy dissipation due
to turbulence, |/ , and the loss of energy due to turbulence
per unit width, JE./dt @

x5 2\
£ (2 + A (%% (11)

W =1I5p
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On the other hand, the total wave energy of a solitary
wave per unit width, Es , is given by

e Ya
E.=2E =35 pe#'(dl) (1+4) (13)
The time rate of energy transport, dE/dt , 18 ag follows:
d(H
dbs = A pon ()1 ) AR (14)

WAVE TRANSFORMATION ON A HORIZONTAL BED

The rule of energy conservation 1s expressed in the
next equation:

E, _ _(dE
T --(F+ 5 (15)

Substituting Egs. (5), (12) and (14) into Eq. (15), we find
the following differential equation:

dx  __
K 4 (%)
0'03'74}86%")3(” )WZF('{)‘WW?QT]—(—):(H'%)% _g_) (16)
where
Fit)= 1+399(f+727(5) 765l aeofg) > 208(8)
(17)

@(%)- ]—1. 08( )+ 26(%)10463{;’21)

The i1ntegration of the above equation can not be done analyti-
cally, but be done numerically as shown i1n Fig. 1. Here 4B
1s selected to be equal to 5, and the effect of bottom fric-
tion 1s included in a factor of CfT/,/g/ﬁ_ selected as a param-—
eter of family of curves.

WAVE TRANSFORMATION ON A UNIPORMLY SLOPING BED

The slope of the bottom 1s defined by S =-dhMx, and
the time rate of energy transport per unit width can be
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Fig. 1. Numerical integration curves of Eq. (16). (Horizontal bottom)
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Fig. 2. Laboratory installation. (First set of experiments)
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expressed by the following:
dEs _ 9Es , 9Es 3H
& = c(-S5% +55° 52 (18)

Taking into consideration the next relationships,

v2 vz
&Es = 256 ppnadl) (145
B o (B " s

L = ema(1+ )"
we may obtain the following differential eguation:
df _

e
_ 5 d(F) (20)
00103 ()4 + EL A (R +om2G 1+ 5V ) B 1918 ()

where the functions of F(HA&) and P(HfR) are the same as given

in Eg. (17). The integration of the above egquation can be
done by the method of numerical computation.

EXPERIMENTAL ANALYSIS
HORIZONTAL BED

The experimental studies by using a horizontal bed were
conducted for the purpose of determining the damping coeffi-
cient of turbulence, B , which was defined in Eg. (8). It
seems to be quite reasonable to assume that the turbulence
of flow induced by breaking of waves takes the most important
role on the wave attenuation in the surf zone on a smooth
horizontal bed comparing to the bottom friction and others.

The wave channel used for the present studies is 17 nm
long, 0.7 m wide and 0.6 m high. At one end of the channel,
an elevated wooden horizontal bottom was installed and con-
nected to the channel bottom with a slope of 1/5 as shown
in Pig. 2. The surface of the horizontal bottom mentioned
above wag covered with a smooth rubber plate. Waves were
generated at the other end of the channel by a flap type wave
generator, The incident waves were forced to break themselves
on the sloping bottom and then propagated to the elevated
horizontal region. Among the various kinds of waves gener-
ated, we selected only the particular ones which broke just
at the corner between the elevated horizontal bottom and
the sloping bed. The characteristics of the selected waves
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are given in Table 1.

A sample plotting of the experimental data 1s presented
in Fag. 3. Here the tested waves have the same period of
1 sec, but the water depth above the elevated bottom has a
defferent value for each run. Figure 4 gives a comparison
of the laboratory data with the analytical curve determined
by taking 8=5 . From this figure 1t may be recognized that
the wave steepness 1n deep water of incoming waves seems to
have very little effect on the wave transformation in the surf
zone.

Summarizing the results of our laboratory experiments,
we conclude that the damping coefficient of turbulence, & ,
can be taken a certain value between 4 and 5 in the present
experiments.

In order to investigate the applicability of the above
treatment to the practical phenomena in field, we took the
field data of wave height i1n the surf zone which were obtained
by Ijima by means of stereo photography on the Niigata West
Coast. The bottom slope of beach at the gquestioned site
1s so gentle, therefore the beach slope is agsumed to be hori-
zontal, Figure 5 shows the comparison of various curves
such as (1) laboratory curve, {(2) analytical curve calculated
under the assumption of A= , and C}:rQOS' , (3) curve pro-
posed by Ijima empirically, and (4) mean curve of field data.
The agreement between the analytical curve and the curve of
field data seems to be quite consistant. But here 1t 1s
necessary to remark that the value of B in laboratory is 4 ~
5, While the value in field 1s 1. The above fact suggests
us the existance of scale effect of turbulence in the present
problem. From this point of view more field works are cer-
tainly necessary to be done.

UNIFORMLY SLOPING BED

Another series of experiments were carried out to reveal
the i1nfluence of bottom slope on the wave transformation
i1nside the surf zone. The first set of experiments i1n which
we tested the bottom slopes of 1/20 and 1/30 was conducted by
using the same channel as i1n the previous experiments. The
second set of experiments in which we tested the bottom slope
of 1/65 and 1/80 was done by using another channel at Cheng
Kung University, the size of which was 75 m long, 1.0 m wide
and 1.2 m deep. The slope i1n the latter two cases was made
of concrete. The conditions of both sets of experiment are
given in Table 2.

The dimensional analysis introduces the following rela-
tionghip among the wave characteristics, water depth, and
bottom slope condition in a non-dimensional form.



224 COASTAL ENGINEERING
Table 1. Experaimental conditions on horizontal bottom.
Period Water depth Wave height Steepness
T(gec) d{cm) H, (em) Ho/Lo
2.6 15.0 18.18 | 8.54 -~ 12,0 |0.007 - 0,010
2.0 6.5, 10.5, 15.0 5.75 ~ 15.%3 0,009 - 0.025
8.5, 12.5, 18.2
1.5 6.0, 10,0, 15.0 3,43 -~ 14.4 |0.010 - 0.044
Te5, 12.7
1.0 6.1, 10,0, 15.0 3,65 ~ 15,1 [0.025 - 0.100
7.5, 12.5, 10.1

T=10sec
h=6 lcm
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Fig., 3. A sample of experimental results.
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(Horizontal bottom)



=|x

Fig. 4. Comparison of the experimental results with the theoretical curve.
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Table 2. Experimental conditions on sloping bottom

Bed condition Wave characteristics Depth
Surface |slope| T(sec) Ho(cm) Ho/I’o d(cm)
Rubber |1/20 |2.0, 14.1 {5.6 - 16,9]/0.008 - 0,053 | 43,3
surface |1/30 |2.2, 14.1 |4.7 - 17.2{0.007 - 0.052| 39.0

1/65 (1456 2:015 9 _ 54.5/0.009 - 0.065] 78.0
Concrete 2,0, 1.8
bed
1/80 [1+6s 244 5.8 - 16.7(0.011 - 0.072| 75.0
1.2
28
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Fig. 6. Transformation of wave heights inside surf zone with 1/65 bottom slope.



WAVE TRANSFORMATION 227

i

SR ) (21)

or

L= ydt £ o) (22)

where subscript ¢ and b denote the values in deep water and
at breaking point respectively.

According to the result of dimensional analysis the
experimental data were plotted as shown in the following
figures. Figure 6 gives several examples of wave transfor-
mation on the sloping bottom of 1/65, and 1ndicates that the
limiting condition of solitary wave, H=o018h , 1s not suita-
ble to express the wave height inside the surf zone. In
Fig. 7 1s shown the correlation between the relative wave
height, H/H, , and the relative water depth, h/hy , for each
bottom slope. Scatter of data i1n these figures seems t0
be caugsed mainly by the instability of waves inside surf zone,
but the steepness of incident waves i1n deep water geems to
have small influence on the stated relationship. Therefore
the effect of bottom slope on the wave attenuation in the
surf zone 1s summarized in Fig. 8, from which it may be recog-
nized that the gentler the bottom slope becomes, the smaller
the relative wave height, H/H, , becomes at the same relative
water depth, h/h, . The above fact 1s due to that the decay
distance from the breaking point on a gentle slope 1s larger
than on a steep slope.

In the same way we plotted the data on the following
graphs as shown in Fig. 9 1in order to find out the relation-
ship between the relative wave height with respect to water
depth, H/h , and the relative water depth, h/h, , for each
particular bottom slope. There 1s a large scatter of data,
but 1t 1s possible to draw mean curve through the plotted data.
A family of curves thus determined 1s given in Fig. 10 with
the parameter of bottom slope. The figure shows that the
relative height,H/h , has 1ts minimum on the condition of
h/he=06 . The analytical results obtained by the integra-
tion of Eg. (20) under the conditions of AB=4 , and Cf=0.02
are also plotted in the same figure by dots and dashes. The
agreement between the computed and experimental results 1s
not fully satisfactory, therefore it is quite necessary to
treat the present problem by more regorous approach.

Lastly, 1t will be mentioned here that the Boussinesqg's
expression for wave celerity has the better agreement with
the experimental results as shown in Fig. 11. The eguation
is as follows:

C =/9R (I +(@/R}{ I +(A/2R)} (23)
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where @, is the crest height above the still water level.
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