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ABSTRACT 

The purpose of this paper is to discover the mechanism of the 
laminar damping of oscillatory waves due to bottom friction with the aid 
of the theory of the laminar boundary layer due to waves and of the 
measurements of instantaneous shearing stresses exerted on a smooth 
bottom, resulting from wave motion and wave amplitude attenuation with 
distance.  In a theoretical approach the effects of convective terms 
involved in the basic equations of laminar boundary layers developing 
both on the bottom and the side walls of a wave channel, are considered 
on the basis of an approximate solution of the equation, and a theory of 
the laminar damping of Airy waves is established.  In experimental 
studies, furthermore, direct measurements of instantaneous stresses and 
observations of wave amplitude attenuation were performed, and the exper- 
imental results are compared with both the above theory and the linear- 
ized one. 

INTRODUCTION 

The phenomenon of wave damping due to bottom friction is of inter- 
est and also of practical significance in the determining of design 
waves for coastal structures in shallow water. 

This paper presents part of the results obtained from basic stud- 
ies on the wave damping due to bottom friction which have been carried 
out for several years at the Ujigawa Hydraulic Laboratory, Disaster Pre- 
vention Research Institute. 

¥ith regard to the transformation of waves by the processes of 
internal friction and bottom friction, Lamb(1945) investigated theoreti- 
cally the damping characteristics of deep water waves by applying the 
small amplitude wave theory, and also Hough(l896) and Biesel(l949) estab- 
lished a theory of wave damping for shallow water waves.  It was conclud- 
ed from their studies that the rate of wave damping due to internal 
friction has little effect on the waves treated in this paper. As re- 
gards the wave damping due to bottom friction, on the other hand, Putnam 
and Johnson(1949) made practical studies, but it seems that their results 
are not exact because they fail to provide an adequate description of 
the characteristics of flow near a sea bottom which is the result of 
oscillatory wave motion.  In addition, some experiments on the wave damp- 
ing due to bottom friction and percolation over a permeable bed were 
performed by Savage(l953), and the experimental results were compared 
with the theory. Moreover, the relation between the formation of sand 
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waves and the wave energy dissipation was also investigated. With regard 
to the energy dissipation on a sea bottom, there is the phenomenon of per- 
colation as discussed in Savage's paper.  On this subject, Putnam(l949) 
made a theoretical investigation, and later^the same problem was re- 
examined by Beid and Kajiura(l957), using a more rigorous approach than 
that employed by Putnam and a misinterpretation in Putnam's paper was 
discovered.  In recent times, such problems were investigated theoreti- 
cally by Hunt(l959)  and Marray(l965), taking a viscous flow on the 
permeable boundary surface into account, and the result obtained by Hunt 
agreed well with the results of Savage's experiment on waves over a smooth 
sand bed in cases where the values of viscosity and permeability were 
small. 

On the other hand, in Japan some investigations on wave damping 
were made by Kishi(l954), and Nagai and Kubo(l960), using the same pro- 
cedure as that used by Putnam, but it appears that there are many problems 
to clarify. Friction facors along actual coasts were measured by the 
authors(1965). 

In studying the phenomenon of wave damping due to bottom friction, 
it is necessary to analyze the behavior of boundary layer developing on a 
sea bottom. Regarding the development of the boundary layer, Eagleson 
(1959, 1962), Grosch and Lukasik(l960, 1963), and the authors(l961, 1964, 
1965) have carried out experimental studies on the wave damping due to 
bottom friction and the results were compared with the formula of wave 
damping derived on the basis of the linearized, laminar boundary layer 
theory.  It was found from the comparison that there are wide differences 
between the theoretical and experimental values. Jonsson(l963) has at- 
tempted to estimate the bottom friction by measuring the velocity profiles 
in a turbulent boundary layer developing on a rough sea bottom due to wave 
motion. Most recently Van Dorn(l966) h&s carried out the precise exper- 
iments of laminar wave damping for dispersive oscillatory waves and com- 
pared with the theoretical results in good agreement. 

The purpose of the present studies is to discover the mechanism of 
the laminar damping of oscillatory waves. For this an approximate solu- 
tion of the non-linear laminar boundary layer equations is derived by 
means of the perturbation method, and the effects of the convective terms 
in the equations on the bottom shearing stress and wave energy dissipa- 
tion are clarified.  The theoretical results for bottom shearing stresses 
are compared with the results of the direct measurement of them. With 
regard to the wave damping, a theory of laminar damping based on the above 
laminar boundary layer theory is established and the theoretical result 
is compared with the results of the experiment of wave amplitude attenu- 
ation and the linearized theory. 

THEOBX OF WAVE DAMPING DUE TO BOTTOM FRICTION 

LAMINAR BOUNDARY LATER THEORY 

With regard to the boundary layer growth resulting from wave 
motion, for a solitary wave Iwasa(l959) made an analytical investigation 
applying the momentum integral equation of the boundary layer and obtain- 
ed interesting results on the laminar boundary layer growth and the wave 
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damping. Also, for uniform oscillatory waves, there is only a linearized 
theory of the laminar boundary layer, based on Stokes's solution, of 
which the validity has been examined by comparing with the experimental 
results obtained by Eagleson(l959, 1962), Grosch and Lukasik(l960, 1963), 
and the authors(l961, 1964). However, it has not yet been made clear how 
the convective terms involved in the basic equation of laminar boundary 
layer influence the boundary layer growth.  Grosch(l962)  has already de- 
rived a solution of the non-linear boundary layer equation in the form of 
a power series by using Glauert's method, but it seems that the solution 
is inadequate because it is impossible to examine the phenomenon over a 
whole period.  Therefore, the authors derive an approximate solution of 
the laminar boundary layer equation written in dimensionless forms by 
means of Lighthill's method.  With regard to the boundary layer develop- 
ing both on the bottom and the side walls of a wave channel, the effects 
of the convective terms on the shearing stress are investigated on the 
basis of the above solution. 

Laminar boundary layer developing on the bottom of a wave channel 
Taking the axis of x in the direction of the wave propagation and the 
axis of z perpenducular to the bottom and denoting the velocity components 
in these directions by u and w respectively, the two-dimensional laminar 
boundary layer equations for the unsteady, incompressible fluid are writ- 
ten as: 

du du   ,  du 1   dp        d2u 

d x       d z        '       p  d x       d t d x 

in which t is the time, p the pressure, V  the kinematic viscosity of water, 
j> the density and U the velocity just outside the boundary layer, to 
which the relation derived from the wave theory is applied. Now intro- 
ducing a representative velocity u , and the wave celerity c and using 
the dimensionless quantities defined as follows: 

u = aua, zv=u0w/ T/R , U=u0U 
p=pu\p-,R=cLI2Kv,x = (.LI2n-)t\ (2) 

z=(X/2*V.R~X, *= (L/2 * c> 

Eq.   (l)   can be written as: 

3s 
ST <m* da 

d( 4-KJ 
da\ 
3Ci -4£+ 

92a 
dC 

du 
d( 

), - df 
9f 

dV 
dx +®* eu (3) 

with the initial and boundary conditions that u = 0 at T = 0, u = 0 at £ 
= 0 and u = U at <£ •+ oo . 

Taking account of progressive waves on the basis of Airy's wave 
theory and applying the maximum velocity component at a bottom uj, max to 
uQ> the following relationships are obtained: 

C7=sin(f-0 -I 
-9^/Sf = -cos(c--O + (1/2)(K0/O sin2(f-0 I 

«.=»s»„ = (iH/r)/sinhtt, k=2n/L f (4) 
«„/<:= fcJma!!/<;=7i(H/.L)/smhM<gl J 
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Expressing the solutions of u and w respectively by 

0 = fio + e£1-he202 + ,) {z\ 

the solution of Eq. (3) can be obtained by the perturbation method with a 
parameter of 6 which is equal to u0/c.  Substituting these expressions into 
Eq. (3) and satisfying the relation between each coefficient of terms on 
both sides, multiplying the ascending powers of 6 , a family of equations is 
obtained as follows: For u0 and WQ, 

9a0  92a0       ,.      .  . 

iL+^=o (6) 

which is identical with that for one—dimensional heat conduction.  The ini- 
tial and boundary conditions for Eq. (6) are: u0 = 0 at T  = 0 and ?= 0, and 
UQ = U = sin(£- T) at £ »oo.  Eq. (6) is for the so-called linearized 
theory and its solution has been derived by Grosch(l962) in the form 

a0=sin(f — r) — e~ vfsinff — r-I—ryCl 

+2f-e«-o-^^rf(, (7) 
irjo 1 + a* 

In the above equation, the third term on the right vanishes when T becomes 
sufficiently large. Therefore, taking only the so-called steady state so- 
lution into account, the third term can be omitted. 

Next, the equation for u and w can be written together with the 
initial and boundary conditions as follows: 

9 a,  92s,   /  9 fl0  _ 9 ffl. \ „dU    , 
-^'-^ = -{a'-WrW'lK~)+u-W (8) 

In general, the expression for u can formally be written in the form 

dt SC° ,V   • ''     9f ' d( 1 <g\ 

together with the initial and boundary conditions. 

Since this is a heat conduction type equation, the solution for u 
can be found by applying Green's function H(£ ,T;q,s) and the solution for 
u by the perturbation method can formally be expressed as: 

«(f,C,0 =a0-£ ds\   H(c,r,q,s)F,(a,s)<lq 
jo Jo 

ii' 'irfl(C,!,j,!)F.(},i)^ 

+ • (10) 

in which 



OSCILLATORY WAVE DAMPING 153 

H<.C,r,?,s)={l/2V*0-s)} 
x[exp{-Cf-?y/4(—^} 

-«p{-(C + ?)74C—0}] ,r> s, 
= 0, r<i (11) 

Since the integration of the above equation is complicated, taking 
into consideration the form of fuction F (q, s), only the steady state 
solution is considered in the subsequent descriptions.  The steady state 
solutions for u and w can be written in the form 

o     o 

a„=sm(f-0-e"c/^5'sin(f-r->-~=c)  ' 

-w0 = Ccos(f -r)-<rc'V2sin ,- (12) 

x('-r+75-f-T)+8,n(f—T)J 

Substituting these relationships for u and w into Eq. (8), the 
equation for u becomes finally 

sa,     d2a,     1 (.,,_/ 1 \        /  1        x\) 
•^-ir=-2rt/^co,(72f)+fe^v*co8(vs,f-4)}',,nZff-rj 

{^^'K^-T) +^^cc(^f)-^^}    (13) •1^ 

-•g-fe-^vTsmf 

^rCe :/^2 cos' 

Following Schlichting's procedure(I960), the solution of Eq. (13) which 
satisfies the boundary conditions that u = 0 at ? = 0 and ?u./®$ = 0 
at "» •* &o , can easily be derived, and an approximate solution for u 
finally be written in the form 

(72-f-7)]•2«-0 ~ {-^«-f+§^^co.(^f) 

From this result, it is found that only the constant term on the right of 
Eq. (14) remains, taking the average of u with respect to time at £ -» o° , 
just outside the boundary layer, and that there exists a certain mass 
transport velocity which can be expressed by 

S»=(3/4> (15) 

This can be written in the form 

«„= (3/16)^(2 i/r)/smh" kh ( 16 ) 

which is identical with that obtained by Longuet-Higgms( 1953) . 
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Applying the above result, a theoretical formula for the bottom 
shearing stress can be derived.  The shearing stress on the bottom is 
generally given by the relationship T = /(^u/az) __ for laminar flows. 
Expressing this in the dimensionless form and using Eq, (5), the shearing 
stress can be written as. 

+ «'C9fl^OC=„+ } (17) 

Calculating the above equation with the relationship of Eq. (14), the 
following equation is obtained as an approximate solution for T . 

V/»,-*«.-"-[.m(*-r-i)+.yT+(i-
5-^),m2«-0 

in which        +(#"1#)co.2tf-o}+oco] (18) 

The first term in the brackets of Eq. (18) indicates the results based on 
the linearized theory and the second term indicates the effect of the 
convective terms.  In Pig. 1, the calculated results of Eq, (18) are 
shown by using the value of 6= 7t(H/L)/sinh(kh) as a parameter and also 
the time variation of the dimensionless water profile \ for the purpose 
of comparison.  It is found from the figure that the characteristics of 
the shearing stress vary slightly with the value of &, but the effect of 
& may be negligible because the value will not exceed about 0.15 for the 
waves treated in practice. 

According to Eagleson's study, the average bottom friction coef- 
ficient is defined by 

Cf^ZijpU' (20) 

-2 2 

in which T and U are the average values of T    and U expressed by Eqs. 
(18) and (4) respectively.  Since it is complicated to calculate C 
directly by Eq. (17), the results obtained by the graphical integration 
are shown in Pig. 2. Each of the curves (a), (b) and (c) indicates how 
the phase interval is to be chosen in taking the time average; (a) result- 
ed when the absolute value of r    was averaged with respect to time from 
the phase when T = 0 to &'+ 2%,  and (b) and (c) resulted when T was 
averaged over the phase intervals corresponding to the positive and nega- 
tive values of T respectively.  In the figure, the wave Reynolds number 
R „ is expressed as 

ReT**2KR, = u,,2Tlv (21) 

In the case of the linearized theory where the value of £ vanishes, the 
friction coefficient C. is expressed as 

Cf=&j2liReT-u* (22) 

Laminar boundary layer developing on the side wall of a wave chan- 
nel In the experiment on wave damping, the energy dissipation due to the 



OSCILLATORY WAVE DAMPING 155 

friction acting on the side walls of a wave channel must be considered 
when the width of a wave channel is small compared with the water depth, 
so that it is necessary to describe the behavior of boundary layers devel- 
oping on the side wall. 

Taking the axis of z vertically along the side wall and the axis 
of y perpendicular to it, and using the same notations as those in Eq. (l), 
the boundary layer equations for this case are expressed as 

9 ujd t+ud u/d x+v d u/d y + w 9 u/8 z 

= - (l/<09 p/d x+i>a2u/8 y* 

dw/dt-r-udw/ax+vdiv/dy-hwd w/dz 

= q-0-/P)8p/d z+v a2 w/ay2 

3 u/d x+S v/8 y + d w/S z=0 

(23) 

in which g is the acceleration of gravity and v the velocity component in 
the direction of y.  Using the dimensionless quantities, v = VLQV/^S,   p = 
j>u0 p - ( fgL/27i) £ , and y = (L/2TI) 1/^    in addition to Eq.(2), the 
above equation can be written as 

a a/a-,+e(a 9 a/8f+59 a/at,+%sa «/9c) 
= -d$/dl+6'a/dTi' 

a w/ar+eCa a m/az+va w/a>,+w a w/ao 
=,-ap~iac+82wiari2 

a a/ae+am jar,+a w/ac=o 

(24) 

To derive the solution of Eq. (24) by the perturbation method, 
using the forms 

a=a0+sa,+<siia2 + 

v=v0+s v1+e2v2+ 
w = w0 + e Wj+e2 w2 + 

(25) 

a family of the equations corresponding to Eqs. (6) and (8) together with 
the boundary conditions can be written as:  for u and w , 

o o' 

9 ajar - a2 a jan
2=a U/8T 

a wjar-a2 wjar,2=a W/ar 
a a0/9f+a vjari^a wjac=o 
a„ = iE0=0, r,=0 

a«=t7   and   w, = W, r, ^, 

(26) 

and for u,   and w, 

9 Sl/8r - a2 njar,2= ua u/ai+W a U/ac 
~(a0a nja?+vt 9 aja>,+m0a ajao 

awjar-a2 wjar,2=uaW/a(+Waw/ac 
- (a0 awjd{+v0 awjd7,+w08wjao 

a ajas+dvja-n+a wjac=o 
a,=TO,=o,7=o, 8ajar,=awjar,=o, ,_», 

(27) 
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in which on the basis of the wave theory U and ¥ are the velocity compo- 
nents of water particles just outside the boundary layer on the side wall. 
Applying the relationships derived from Airy's wave theory in this case, 
solutions for u and w calculated to the second approximation become 
finally 

a= jsin(f-r)-e"''//2sin(f-r+—r^v) coshC   +«   - \e~"V7 sin(-j= 5 

+ (l/4)<rV2-» cos C V"2^) -C5/4>-'cos Jcos2 Cf-r)l+0(O, 

'(f-^7T')}' ra=- jcos(c-r)-e-»/V2 cos(f _rJ._i,!7)[ sinhC + e j(l/4)<r V27 

\-e~'l -I2 sin( •^=7j-(l/4)j sinh 2 <T + 0(e2) 

(28) 

With regard to the mass transport, it can be seen from the above results 
that it does not exist m the direction of the wave propagation, but that 
in the vertical direction there exists a mass transport velocity expressed 
as 

- (s/4) smh 2 C (29) 

which is rewritten as 

„= - (1/16) {mk(2ir/T)/s,i&Uh) sinh2 ( (30) 

In the above equation, wm vanishes at < = 0 and becomes maximum at the 
water surface. 

Consider the shearing stresses acting on the side walls in a wave 
channel.  Using Eq. (28), the relationships for these are derived as 
follows: 

<'o»//>«.'=i!«"",[siii(f-r-i/4jcoshf    +E{(l-3vr2"/4)sin2(f-r) 

+ (5/4-3 VT/4) cos2 Cf-O} +0(e!)] (3l) 

in the x direction and 

--<,o»/>»Ki>,=-R.""''[cos(f-r-*/4) sinhC   -«( V1T/4) sinh 2f+0(E
!
)] (32) 

in the z direction, in which Re is expressed by Eq. (19). 

The above method of analysis m applying Airy's wave theory is also 
applicable in the case of waves accompanying the mass transport on a sub- 
stantial scale, Stokes's waves for example, and the authors have already 
made some calculations regarding it which will be published at a late date. 

THEORY ON WAVE DAMPING 



OSCILLATORY WAVE DAMPING 157 

In the subsequent descriptions, the wave damping due to friction is 
considered after the wave energy dissipation due to viscosity within the 
boundary layers on the bottom and side walls has been estimated on the 
basis of the non-linear laminar boundary layer theory. 

Wave energy dissipation within boundary layers  It is assumed that 
the wave energy is dissipated only by bottom friction due to viscosity. 
The rate of energy dissipation in an mcompressive fluid due to viscosity 
per second per unit volume is written in terms of velocity gradients 
through Rayleigh's laminar dissipation function as 

in which <j>  is the rate of energy dissipation, known as the dissipation 
function.  Neglecting the terms including w and 9u/?x. which are quite 
small compared with 9u/3z, the average rate of energy dissipation per 
unit area in a boundary layer E   can be approximately expressed as 

E,b « ix u,WR/LJ2J(\di!/dcydCdS (34) 

in which ju.  is the dynamic viscosity of water and &~  the dimensionless 
expression (271,/R J/L) of the boundary layer thickness S •     Calculating Eq. 
(32) with the aid of Eq. (14) yields 

,,..!,(•£)•„*,» {1^(ii_j^L)£+0(£!)j     (35) 

This shows, needless to say, the energy dissipation when the effect 
of the convective terms involved in the boundary layer equation is taken 
into account.  In the equation, the first term on the right is identical 
with that derived from the linearized theory and the second term indicates 
the effect of the convective terms.  From this result, it is found that 
the rate of the wave energy dissipation is about 2 $ less than that in the 
linearized theory when the value of £ is  assumed to be 0.2. 

Since the average rate of energy dissipation per unit area of the 
side wall of a water tank Efw can be calculated by 

X((9«W+(8g/9,)VW«C (36) 

substituting Eq. (28) into this, the integration yields 

2tf,.*£*(-^)"co*** 

x{1+5#(-5-^)'"ch**+°^ (37) 

From the above result, it is considered that the effect of the con- 
vective terms on the rate of energy dissipation on the side wall is of the 
order of £ sech(kh).  However in the authors' experiment the maximum 
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value becomes as much as 20 $ of that of the linearized theory. 

Now, denoting the width of a water tank by B and the ratio of the 
energy dissipation in boundary layers on the bottom to that on the side 
walls by <jf , the following approximate relationship can be obtained. 

* =ll|ftT~*=<*B/slnh2M:) (1~"(1 086sechtt+0' !97)£) (38) 

In the above equation, the relation corresponding to the case when £ van- 
ishes is identical with what is called Keulegan's method presented in 
Savage's paper which is derived from the linearized theory. 

Mechanism of wave damping The relationship of the wave energy 
conservation for a two-dimensional case, under the assumption that the 
energy is dissipated by bottom friction only, is given by 

•^(P,E^-Eft (39) 

in which Cg is the group velocity and E the wave energy per unit area. 

Substituting the relationships for Cg and E derived from Airy's 
wave theory into Eq. (37), and integrating under the assumptions that H = 
H0 at x = 0 and 6 is taken to be constant, yield 

H=H,&LV(-ttxlL~) (40) 

in which 

e„ « (4 n*l$ V) (1 - 0 197 O/Csmh 2 kh + 2 kH), .      s 
,S=0r/xT)"! (4    ' 

It is concluded from the above equation that the effect of the convective 
terms on 6^ becomes at most 3 %  for the waves made in the authors' ex- 
periment.  In addition, the expression for 6D in *ne case when &= 0 
agrees with that obtained by Eagleson and is called the dimensionless 
decay modulus. On the other hand, another expression for the relationship 
of Eq. (38) was established by one of the authors(1961). 

Instead of Eq. (37), the following equation must be used when the 
energy dissipation due to side wall friction is taken into account in ad- 
dition to that due to bottom friction: 

Tj.C,EB)~-(EfiB+2E/u,K) (42) 

Thus, denoting the decay modulus based on both bottom and side wall fric- 
tion by £/,, \, the relationship of wave damping corresponding to Eq, (38) 
becomes 

H= H, exp C - n+wXlL') ) 

(43) 
<»4.»= (4t'/piXl + W/Csinh2M+2SJ) J 

From the comparison between the above equation and Eq. (39), the 

relationship between 6h  and 6(b+w) can be expressed as 

^W&^+l)}^ (44) 
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so that if &,,     \   is established by experiment the wave decay modulus £-^ 
due only to Doxtom friction without the effect of side walls can be calcu- 
lated by Eq. (42).  Referring to Eq. (36), the effect of the convective 
terms on £^  is expected to be fairly large when the energy dissipation due 
to side wall friction is taken into account. 

Relationships between bottom friction factor, bottom friction coef- 
ficient and wave decay modulus  In studies on wave damping by wave obser- 
vations, the estimation of the bottom friction factor has been usually 
made by means of the following relationship for bottom shearing stress, 
defined by Breschneider(l954), 

<•.=*/«»* (45) 

in which f is the so-called bottom friction factor, and u^ the velocity 
component of water particles on the bottom, which is equivalent to U 
presented before.  The rate of wave energy dissipation E  ' derived by the 
definition of Eq. (43) can be written as 

^'/4=(4/3*»„> (46) 

Then, assuming that the rate of energy dissipation based on the linearized 
theory equalizes Eq. (44) , the following expression is obtained for the 
bottom friction factor. 

Consequently, from the comparison between Eqs. (22) and (46), the relation 
between f and Cj can be expressed as 

f-G-'ISifS^Cf (48) 

and from Eqs. (40) and (46) the relationship between 6, and f can be 
written as 

/=(3/32a-)(j(///L)-i {sinhM(sinh2*A+2M)| (49) 

In addition, the damping characteristics of waves based on Eq. (44) is ex- 
pressed by 

H/H0 = 1 - (8/arv^f )fttR,Tin(x/L) (50) 

EXPERIMENTS ON BOTTOM SHEARING STRESS AND WAVE DAMPING 

MEASUREMENT OF BOTTOM SHEARING STRESS 

There are two methods for determining experimentally the bottom 
shearing stress in the case of laminar boundary layer.  One is to find the 
value of TQ  indirectly from the measurement of the velocity distribution, 
and the other is by the direct measurement of the shearing stress on a 
bottom surface.  The latter was adopted in the present study and a measur- 
ing device similar to that used by Eagleson(l959) was made. 

Characteristics of the measuring device  Fig.3 shows a schematic 
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view of the measuring device.  It consists of three mam parts, which are 
a moment meter, a supporting rod and a flat plate called a shear plate. 
Basic investigations of the characteristics of the device were carried 
out.  Although the details are omitted here, this investigation yields the 
following results: (l) It is desirable to reduce the mass of the shear 
plate and the supporting rod as much as possible.  (2) If the shear plate 
slips upward from the bottom, the shearing stress is overestimated owing 
to the drag force acting on the edges of the shear plate;conversely, if 
the shear plate slips downward, there is not such a marked effect.  (3) 
The larger the clearance .6 h under the shear plate, the smaller the exper- 
imental value of the shearing stress becomes, and the more the value tends 
to approach the theoretical one.  (4) The less clearance gap between the 
shear plate and the bottom surface &  b, the smaller the experimental value 
becomes, and the more the value tends to approach the theoretical one. 
(5) The thinner the shear plate, the smaller the experimental value 
becomes, and the more the value tends to approach the theoretical one. 
(6) If the shear plate is made smaller and the supporting rod is made 
lighter, the experimental value becomes small and approaches the theoreti- 
cal one.  (7) The width of the shear plate b has little effect, but the 
influence of the shield pipe on the shearing stress will appear if the 
width is too small. 

On the basis of these results, a shear plate 8.1 cm long, 5 cm wide, 
0.2 mm thick and made of stainless steel was finally chosen to be used. 
Furthermore, to prevent flow through the clearance under the plate, a small 
channel 3 mm wide, running from wall to wall of the recess in the trans- 
verse direction, similar' to that used by Eagleson, was made and filled with 
mercury until the meniscus touched the underside of the plate. 

Experimenatal procedures  The characteristics of waves and water 
depths used m the experiment are shown in Table 1, in which (l) indicates 
the experiment made in 1964 with the use of a plunger-type wave generator 
and (2) that made in 1965 with the use of a fluter-type one.  The shearing 
stress acting on the bottom was measured for various wave characteristics. 
Wave heights were recorded by electric resistance type wave meters into a 
penwritmg oscillograph. 

Results of experiment and considerations  In order to estimate 
exactly the shearing stress from the measurement of the force acting on 
the shear plate, a correction for the forces acting on the plate other 
than the shearing force is necessary.  The external force F' is assumed to 
be equal to the sum of three forces: the shearing force, the force result- 
ing from pressure gradients acting on both sides of the plate and the vir- 
tual mass force.  Since, however, the flow under the shear plate is pre- 
vented by injecting mercury into the small channel, it is doubtful whether 
the virtual mass force acts on the plate; therefore, the virtual mass 
force is neglected m this case, and the experimental values are examined 
on the basis of the linearized theory, assuming that the effect of the 
convective terms presented before is omitted. 

Denoting the surface area of the shear plate by A, and the thick- 
ness by d, the horizontal force F per unit area acting on the shear plate 
is finally written as 
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F=F'/A=--/C* + (CTD)2Hs<<t—'+£) (51) 

C=»kclB/2smhih,D=pgkd/2coshkh, 1 ,       > 

£=tan-i{l + (0/C)},  D/C=2gd    ) 

Therefore, the relationship between the maximum measured horizontal 
force per unit area Pmax and the maximum shearing stress TQ max can be 
expressed from Eqs. (50; and (18) as 

'""""LiTIITl^cJp]72^" (53) 

Fig.4 shows the relation between T max/<>gH and h/LQ with the wave 
period, in which L0 is the deep water wave length.  The experimental data 
were corrected by applying Eq. (52).  In this figure, arrows at each ex- 
perimental value indicate the range of scatter and circular points are the 
corresponding mean values.  It may be seen from the figure that experiment- 
al results agree well with the theoretical values from the linearized 
theory. 

The comparison between the theoretical bottom friction coefficients 
and the experimental values obtained from the results of shearing stresses 
is shown in Fig.5 against the wave Reynolds number of Rgij-  The experiment- 
al values were corrected by Eq. (52),  Eagleson's data are also shown in 
the same figure.  They are very much larger than the authors' results and 
scatter considerably.  A possible reason for this is that the shear plates 
used by Eagleson were much larger than those used by the authors, so that 
the effective forces other than the shearing force would act on the shear 
plate, and that therefore the correction method for these forces was in- 
adequate.  It may be seen from these figures that the experimental values 
agree sufficiently well with the theoretical ones.  This is also to be ex- 
pected from the theoretical consideration taken into account  of the 
effect of the convective terms, and it is concluded that the effect can be 
neglected within the range of the present experiments. 

EXPERIMENT ON WAVE DAMPING 

Experimental equipment and procedures  The wave channel, the wave 
generators and the wave meters used in the experiments were the same as 
those used in the experiment on shearing stresses.  Characteristics of 
waves and water depths in the experiment are presented in Table 2, in 
which (l) and (2) indicate the experiments carried out in 1964 and 1965 
respectively. 
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Wave heights at the five or six stations at intervals of 7 m or 9 m 
were recorded at the same time.  Owing to the limitations of the experi- 
ment, the wave heights were measured simultaneously from all the stations 
although not from all the stations at any one time, the wave period being 
kept constant, and then determined by taking an average of five to ten 
wave heights when the wave tram was uniform, or twenty wave heights when 
the wave train was somewhat scattered. 

Results of the experiment  By changing the water depth for each 
wave period as presented in Table 2, and plotting the experimental values 
of wave height on semi-log scale paper, the following relationship already 
derived theoretically in Eq. (42), could be verified: 

HjH„=exp ( - a (»+„>x) (54) 

in which «(v, \ is the damping coefficient including the influences of 
the bottom and Side walls of the wave channel.  From Eqs. (39), (42) and 
(54), the relationships between a,, , >. and £,,  •, ,  a, and £,   are ex- 

'        j.-  i (b+w)     (b+w)'  b    ^b 
pressed respectively as 

alb+w)L = €lHw)   f &bL = £b (55) 

Therefore, by drawing a fitted straight line in the figure, the wave decay 
modulus can be calculated from Eq. (54).  As the value of  6/h, \ varies 
widely according to the manner of drawing a straight line, however, the 
following method was used. For practical purposes, the value of €/K, \ 
must be obtained from the wave heights at stations, H and H , and xne 
distance x between them. Wave heights were accordingly taken at several 
pairs of stations.  Thus the damping coefficients were calculated from 
Eqs. (54) and (55) and these were averaged.  And then the values of Cy. 
were obtained by applying Eq. (55). 

Fig.6 shows the comparison between the experimental values of the 
wave decay modulus and the theoretical ones for the two cases; one is 
based on the linearized theory and the other on the non-linear theory in 
which the effect of the convective terms is. taken into account.  In this 
figure, the experimental results obtained by Watson and Martin, Grosch and 
Lukasik, and Eagleson are plotted, in addition to the authors' results. 
It is found from the comparison that the experimental values of €^ are 
nearly as much as 40 ^ larger than the theoretical ones based on the 
linearized theory, but when corrected theoretically for the side wall 
effect based on the non-linear theory, the experimental values decrease 
by as much as 10 %  and approach more closely to the theoretical ones. 
The data of Grosch and Lukasik were obtained from the experiment on wave 
damping, which was performed in a wave channel whose width was negligible 
as far as the side wall effect was concerned, while Eagleson's data are 
calculated values obtained from the results of the direct measurement of 
bottom shearing stresses. As mentioned previously, it may be seen that 
Eagleson's data give much larger values for £^ than those obtained by the 
authors and by Grosch and Lukasik. 

From the above results, it is found that the effect of the convec- 
tive terms on wave damping is approximately as much as 10 fo  and yet the 
experimental values are as much as 30 f°  larger than the theoretical ones. 
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Although the reasons why the experimental values of wave damping 
appear slightly larger than the theoretical ones, are not yet perfectly 
clear, the following suggestions may be put forward:  One of the reasons 
may be in the application of the wave theory to the theory of wave damp- 

ing, though Airy's wave theory was applicable to the authors' experiment, 
and it is necessary to analyze the damping characteristics of finite am- 
plitude waves, such as Stokes's waves.  The authors intend to perform suc- 
cessive experiments in order to derive the theoretical formula of wave 
damping in the case of Stokes's waves and to compare with the experiment- 
al results.  Secondly, there may be a problem of the transition from lami- 
nar to turbulent boundary layers resulting from wave motion.  Although 
most of the authors' data described above were laminar under the criterion 
of Collms(l963) for the transition.  Since, however, there are wide dif- 
ferences between the criteria of different authorities, this problem must 
be investigated in detail on the basis of further experimental work. 
Thirdly, the wave energy dissipation on the water surface resulting from 
a wave should be taken into account as Van Dorn(l966) has treated.  The 
authors wish to investigate such problems through further detailed experi- 
ments and to discover the mechanism of wave damping due to bottom friction. 

CONCLUSION 

As described above, the authors established a theory of the laminar 
damping of oscillatory waves based on an approximate solution of the 
boundary layer equation, and measured the bottom shearing stress and the 
decay modulus of oscillatory waves.  It was concluded that the influence 
of the convective terms in the basic equation on the bottom shearing 
stress can be negligible, but that on the side wall it becomes quite 
considerable.  Vith regard to wave damping it was concluded that the ex- 
perimental values are approximately 30 %  larger than the theoretical ones. 
It would seem that the discrepancy is due to the existence of some other 
energy dissipation. 

Part of this investigation was accomplished with the support of the 
Science Research Fund of the Ministry of Education, for which the authors 
express their appreciation.  Thanks are due to Messrs. M. Sakai and H. 
Chen for their help during this investigation and Miss S. Ichiju for her 
help in preparing the paper. 
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Fig. 2.   Effect of convective terms in boundary layer equation on bottom 
friction coefficient. 
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Fig. 3.   Schematic diagram of shear meter. 
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Fig. 4.    Comparisons between theoretical curves and experimental 
results of maximum bottom shearing stress. 
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Fig. 6(a).   Comparison between theoretical relationship obtained by the linearized 
theory and experimental results of dimensionless decay modulus. 
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Fig. 6(b).   Comparison between theoretical relationship obtained by the non-linear 
theory and experimental results of dimensionless decay modulus. 


