CHAPTER 5

A PROBABLE LEVEL OF WAVE CREST FOR THE DESIGN

 OF COASTAL STRUGTURESby
Masafumi Kubo
Professor of Department of Civil Engineering, University of Nihon, Tokyo, Japan
and
Mitsuo Takezawa
Assistant, Ditto

ABSTRACT

The height of sea water level in front of a coastal structure changes by the astronomical tide, the meteorological effect and the short period wave. From three histograms of the astronomical tide, meteorological tide and wave height, the probable level of wave crest in the coast will be estimated by the method presented in this paper.

INTRODUCTION
For the design of a coastal structure, the height of its crown must be determined rationally and economically, taking into consideration the water level of the sea and its occurence probability. The water level in the sea is mainly referred to the astronomical tide, the meteorological effect and the short period wave. If component height according to these elements are given as;
x_{1}; the tidal level,
and x_{2}; the level rise caused by meteorological origin, the level of the wave crest X at a certain tidal condition is show by following equation under several assumption:

$$
\begin{equation*}
x=x_{1}+x_{2}+x_{3} \tag{1}
\end{equation*}
$$

In the case of the occurence number of the class mark of x_{1}, x_{2} and x_{3} measured from the observation in a period, three histogiams of x_{1}, x_{2} and x_{3} can be obtained. The probability $P(X)$ of the design level of wave crest will be calculated from those histograms by the method presented in this paper.

ASSUMPTION

On the astronomical tidal change in a period, the height of the tidal level above the lowest level is shown by x_{1}. And observed values of x_{1} is not sufficient on the rational probability theorem because of small numbers of samples. (And numbers of x_{2} and x_{3} are also generally small.) The x_{1} must be observed in the coastal site in consideration, because the value of it is affected by the topographical feature etc.

The meteorological water level is affected by the season and climate, the topographical condition etc. The value of level raise by the meteorological phenomena is given by x_{2} from the observation at the site.

The half height of wave of short period is shown by x_{3}. The x_{3} is referred to the wave generated by wind, swell, seich, carth-
quake etc. And x_{3} is also must be observed in the coast, because the wave height is affected by the scale and kind of waves.

For the calculation of a probability $P(X)$ of X obtained from equation (1), several assumptions as following may be permitted; those are
(a) The correlation of x_{1}, x_{2} and x_{3} is assumed to be small. Therefore variables x_{1}, x_{2} and x_{3} are assumed to be independent each other or non-correlated.
(b) The level of wave crest is given approximately by the sum of x_{1}, x_{2} and x_{3}, or $X=x_{1}+x_{2}+x_{3}$
(c) The falue of difference of the class mark of x_{1}, x_{2} and x_{3} is shown as D that is common and constant for three x.

The occurence frequencies of x_{1}, x_{2} and x_{3} are shown as N_{1}, N_{2} and N_{3} respectively in a period of an observation, such as shown in ${ }^{2}$ following table:

x	x_{1}	x_{2}	x_{3}
($0-0.99 .)$.	$2{ }^{\text {N }}$	I_{2}	$\mathrm{I}^{\mathrm{N}} 3$
(1 - I.99..) D	$2^{N_{1}}$	$2^{\mathrm{N}} 2$	$2^{N_{3}}$
($2-2.99 .)$.	$3^{N} 1$	$3^{N} 2$	$3{ }^{\mathrm{N}} 3$
............	- .	-••	\cdots
	$i^{N}{ }^{\text {l }}$	j_{2}	$\mathrm{k}^{\mathrm{N}} 3$
Total	ΣN_{1}	ΣN_{2}	ΣN_{3}

(a) Coefficient table

In $X_{3}=(0-2.99 .)$.$D ,$
total probable frequencies of X_{3} is and its coefficient

$$
\operatorname{In} X_{4}=(3-3.99 \ldots) D
$$

total probable frequencies of X_{4} is
$=2_{1} N_{1}+2_{1} N_{1}+2_{1} N_{2}+2_{2} N_{2}+2_{1} N_{3}+2_{3}$ and its coefficient

$$
\begin{aligned}
& =3_{1} N_{1}+2 N_{1} N_{1}+3^{N_{1}} \\
& +3 N_{1} N_{2}+2 N_{2}+{ }_{3} N_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=\frac{1}{1} \frac{x_{1}}{1}+\frac{1}{1} \frac{x_{2}}{1}+\frac{1}{1} x_{2} N_{3}, \\
& 1111 \text {. } \\
& X_{4}=I_{1} x_{1}+I_{1} x_{2}+2_{3} \\
& =1_{1} x_{1}+{ }_{2} x_{2}+{ }_{1} x_{3} \\
& =2_{1} x_{1}+x_{2}+1 x_{3} \text {, } \\
& 1_{1} \mathrm{~N}_{1}+{ }_{1} \mathrm{~N}_{2}+{ }_{2}^{\mathrm{N}_{3}} \\
& +{ }_{1} \mathrm{~N}_{1}+{ }_{2} \mathrm{~N}_{2}+{ }_{1} \mathrm{~N}_{3} \\
& +{ }_{2} \mathrm{~N}_{1}+{ }_{1} \mathrm{~N}_{2}+{ }_{1} \mathrm{~N}_{3}
\end{aligned}
$$

and its coefficients are

$3_{1} \mathrm{~N}_{3}+2 \mathrm{~N}_{3}+$	N_{3}	
3	2	1
3	2	1
3	2	1

Therefore, the coefficients table shown as Table-l can be generally obtained.

For an example the coefficient table in the case of $i=4, j=6$ and $k=15$ can be shown as Table-2.

From such coefficient table, if N are multiplied by the coefficient respectively, these products are summed up for each X and the summation is divided by the total frequencies of all X, each probability of X can be calculated.
(b) Example

If the number of occurence of x_{1}, x_{2} and x_{2} are obtained from the observation in 303 days at a coastal site, the calculation of probability of X is shown as Table-2 and Tablem. The histograms of $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} are shown in Figure-1, Figure-2 and Figurem 3. From the calculation of such as Table-2 and Table-3, the probability curve of X can be drawn in Figure-4.

It seems generally that the probability curve of X from that method is situated between the actual observed curve of $X^{\prime \prime}$ and the rational curve of X''.

CONCLUSION
In that example, a probability of one by $303 \times 100=0.33 \%$, and the X of the probability less than 0.33% seems to be negligibly small in this observation period. Therefore, the maximum level of wave crest in the site, $P=0.248 \%$ and

$$
x_{\max }=(27-28) D \div 27.5 \times 0.20=5.50 \mathrm{~m},
$$

and the minimum level of it, $P=0.777 \%$

$$
x_{\min }=(5-6) D \fallingdotseq 5.5 \times 0.20=1.10 \mathrm{~m}
$$

are obtained from Tablem3. Then, it is thought that a structure lower than I.lm must be always in water and a structure higher than 5.5 m may be not economical in that coast. And the most frequent height of the wave crest, that is most probable 7.041% in this example is $X_{\text {mast }}=(11-12) D \div 11.5 \times 0.20=2.3 \mathrm{~m}$. And at the level about 2.3 m , 致e water surface affects most frequently to the structure in this coast.

As the probability of X around the peak point changes by a gentle curve, the probability of a comparatively large X about 3.753 $\%$ at the level of $X_{\text {comp }}=(21-22) D \div 21.5 \times 0.20=4.3 \mathrm{~m}$ is not so small. For a criterimp of a coastal structure, the high water level is appropriate to 4.3 m in the coast.

These values of X and their probabilities can be used for the effective design of a coastal construction.
Table 1.

Table 2.

		：	HNMホナオナ寸ナナオナオナオMNH
$x^{\prime \prime}$	$\begin{aligned} & \text { NーMি } \\ & \text { A-À } \\ & 0-A \end{aligned}$	4	HNMホInceve6e6006 intMNH HNMさinco60660606inオMNH

Table 3.

	x_{1}					x_{2}					2 D	3D	4 D	5D
	D	2 D	3 D	4D	$5 D$	2 D	3D	4D	5 D	6D				
	1	48	133	113	8	54	217	28	3	1	7	47	56	49
2D. 5D	1					54					7			
5D-6D	2	48				108	217				14	47		
6D-7D	3	96	133			162	434	28			21	94	56	
7D- 8D	4	144	266	113		216	651	56	3		28	141	112	49
8D- 9D	5	192	399	226	8	270	868	84	6	1	35	188	168	98
9D-10D	5	240	532	339	16	2701	1085	112	9	2	28	235	224	147
10D-11D	5	240	665	452	24	2701	1085	140	12	3	21	188	280	196
11D-12D	5	240	665	565	32	2701	1085	140	15	4	14	141	224	245
12D-13D	5	240	665	565	40	2701	1085	140	15	5	7	94	168	196
13D-14D	5	240	665	565	40	2701	1085	140	15	5		47	112	147
14D-15D	5	240	665	565	40	2701	1085	140	15	5			56	98
15D-16D	5	240	665	565	40	2701	1085	140	15	5				49
16D-17D	5	240	665	565	40	2701	1085	140	15	5				
17D-18D	5	240	665	565	40	2701	1085	140	15	5				
18D-19D	4	240	665	565	40	2161	1085	140	15	5				
19D-20D	4	192	665	565	40	216	868	140	15	5				
20D-21D	4	192	532	565	40	216	868	112	15	5				
21D-22D	3	192	532	452	40	162	868	112	12	5				
22D-23D	2	144	532	452	32	108	651	112	12	4				
23D-24D	2	96	399	452	32	108	434	84	12	4				
24D-25D	1	96	266	339	32	54	434	56	9	4				
25D-26D		48	266	226	24		217	56	6	3				
26D-27D			133	226	16			28	6	2				
27D-28D				113	16				3	2				
28D-29D					8					1				

