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ANALYSIS OF THE RESPONSE OF OFFSHORE-MOORED SHIPS TO WAVES 

Jan J. Leendertse 
The RAND Corporation 

Santa Monica, California 

INTRODUCTION 

A vessel moored at sea will experience complicated series of transla- 
tional and rotational oscillations due to sea waves.  These motions can be 
considered as the summation of six components, three translational and three 
rotational. 

In the presently available analyses of motions of unmoored ships, dif- 
ferential equations can be written for each mode of movement.  Unfortunately, 
motions in one of these modes are coupled to motions of other modes, and the 
analysis becomes rather complicated.  Generally, the problem is simplified 
by neglecting some of the coupling effects and by specifying the position of 
the vessel in the wave system. 

This study develops and analyzes a model for a moored ship restrained 
by mooring lines, using the presently available mathematical models for the 
free ship and the force-displacement relationship of the cable-holding 
points on the ship. 

The coupled movement (three degrees of freedom) in a vertical plane 
through the longitudinal axis of the vessel and the generated mooring-line 
forces are considered in detail.  The general case of six degrees of freedom 
in arbitrary heading is discussed briefly in general terms. 

MOTIONS OF AN UNRESTRAINED VESSEL IN HARMONIC WAVES 

Referring to the analyses by Weinblum and St. Denis (1950), the move- 
ment of a vessel unrestrained by mooring lines in harmonic waves may be ex- 
pressed with certain approximations by the second-order linear differential 
equation 

»1 *L- + N ^r+K    s + K=AfS    eJujt (1) 
ss  2   ss dt   ss    t    ex s 

dt 

The first subscript of the mass, damping, and stiffness coefficients 
refers to the considered force or moment equation; the second subscript, to 
the mode of movement to which the coefficient belongs (see Appendix for 
symbols).  The first term on the left in Eq. (1) represents the inertia 
force; the second term represents the damping force; the third term is the 
restoring force; and the fourth term is the force due to other modes of 
movement.  The term on the right expresses the periodic force of the waves. 

* 
This research is sponsored by the United States Air Force under Project 

RAND.  This is an abridgment of RAND Memorandum RM-3368-PR.  The views, con- 
clusions, and recommendations expressed herein do not necessarily reflect the 
official views or policies of the United States Air Force. 
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Extensive literature is available concerning the calculations of the 
mass and damping coefficients for a ship of particular dimensions and the 
periodic wave force.  Weinblum and St. Denis (1950), and Korvin-Kroukovsky 
(1961), particularly, present readily applicable data for calculating these 
coefficients and the wave forces.  However, in many instances it will be 
necessary to obtain these coefficients from model tests.  It is noted here 
that the magnitude of the wave force depends on the direction of the ship 
to the waves. 

Information about the coupling of the different modes of movement is 
limited, and only a few incidental cases have been investigated; for example 
the coupled heave and pitch by Korvin-Kroukovsky and Jacobs (1957).  Wein- 
blum and St. Denis neglect the coupling in their analyses of ship motion, 
and in this study, the coupling term will also be neglected initially. 

For the unrestrained ship, the restoring forces and moments in the 
different modes are caused by the displacement of the ship from the position 
of rest; if the ship is moored, the forces in the mooring line will, of 
course, cause additional restoring forces and moments. 

MOORING-LINE CHARACTERISTICS 

The forces exerted on a ship or vessel by mooring it with a long 
single chain or cable that has an embedded anchor at its other end are func- 
tions of the weight of the chain or line and the location of the holding 
point in the ship relative to the anchor.  If it is assumed that the cable 
is lying partly on a flat bottom as in (a) of Fig. 1, then the horizontal 
and the vertical forces on the ship are nonlinear functions of the horizon- 
tal and vertical displacement.  Based on the analyses of single mooring 
lines by use of catenary equations, (b) of Fig. 1 presents the total ten- 
sion and its horizontal and vertical components as a function of the dis- 
placement in nondimensional parameters. 

In a particular condition of the mooring chain, for example, as pre- 
sented in (a) of Fig. 1, a rectangular-coordinate system is fixed to this 
point, with the x-axis horizontal and z-axis vertical.  For small displace- 
ments around the holding point (o,o) the horizontal and the vertical com- 
ponents of the force in the chain at this point may be assumed to be linear 
with the displacement and may be expressed by 

H.  N = H,  . + ax + bz (2) 
(x,z)   (o,o) 

V/  N = V,  . + ex + dz (3) 
(x,z)   (o,o) 

The coefficients a, b, c, and d can be obtained directly from Fig. 2, 
which is based upon an analysis of the catenary equations.  It will be 
noted that b < a and d < c. 

If a chain with a sinker is used, the forces can again be expressed 
by Eqs. (2) and (3), but the calculation of the coefficients becomes 
cumbersome. 
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SPREAD-MOORED SHIP 

Spread-mooring is used presently in the oil industry for mooring 
tender-barges near offshore drilling platforms.  The layout of a simple 
mooring is represented in Fig. 3.  It is assumed that the waves approach 
the ship head-on.  Initially, it is assumed that the ship is subjected to 
uniform waves; later on, the effect of irregular waves will be introduced. 

The ship's motions in the plane considered involve surging, heaving, 
and pitching.  For the unrestrained (free-floating) ship, surge does not 
have important effects on the heave and pitch and consequently may be con- 
sidered uncoupled.  In the case of the moored ship, however, coupling will 
enter into the system due to the mooring lines.  For example, the position 
of the bow, which is determined by heave and pitch, influences the hori- 
zontal component of the mooring-line force, and hence the surge. 

Referring to Eq. (1), Weinblum and St. Denis (1950), and Wilson (1959) 
the linearized equation of motion in surge for the center of gravity of the 
unrestrained ship, compared to a fixed coordinate system taken in the cente 
of the ship in still water, takes the form 

M x + N x = AFX ejt0t (4) 
xx    xx     ex 

where 
M  = M + M" = virtual mass of the ship in x direction 
xx      x 
M = mass of ship 

M" = added mass in x direction 
x 

Generally, the drag is small and may be neglected.  However, in some 
cases, moored crafts may be built specially for mooring purposes, and in 
that case, no emphasis may be placed on towing or propulsion characteristic 
Then, Nxx (damping coefficient) is not necessarily small, and estimates of 
values may be obtained from the propulsion characteristics and a lineari- 
zation process as developed by Havelock (described in Ref. 1) for the 
heaving motion.  For the time being, the drag term will be maintained, 
being important even when small in cases of a resonance condition. 

In addition to the inertia and drag forces, a restraining force exists 
for the moored vessel, and the equation of motion becomes 

M x + N x + F, = AFX eju)t (5) 
xx    xx    h    ex 

where F^ is the resultant horizontal component of the restoring force of 
the mooring cables.  With reference to Eqs. (2) and (3), taking the direc- 
tion of the x-axis toward the left in the direction of wave propagation, 
the horizontal force of the left cable is 

H(x,z)     " H(o,o)     - a<* - P9) + b<z + L9>        <6) x  'stern   N  'stern 
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and   for  the   cable  on  the  upstream side 

H(x)Z),       -  "  H(0)o)K       "  a<X  "  P9)   -  b(z  "  W> (?) 

bow bow 

The other four mooring lines have no significant component in the x direc- 
tion.  Consequently, the total restoring force is 

- Fh = - 2ax + 2(bL = ap)e (8) 

Thus, Eq. (5) becomes 

M x + N x + 2ax - 2(bL + ap)9 = AFX eJUJt (9) 
xx    xx v ex 

Introducing the stiffness coefficients 

K  = 2a (10) 
xx 

and 

Eq. (9) becomes 

K  = - 2(bL + ap) (11) 

M x + N x + K x + Kfl= AFX eju)t (12) 
xx    xx    xx    x9     ex 

In this analysis, following the presentation by Kriloff (1898), Wein- 
blum and St. Denis (1950), and Wilson (1959) , the coupling effects as induced 
on the free-floating ship are neglected.  Tests on ship models and computa- 
tion of coupled and uncoupled motions indicated that neglecting the coupling 
terms is of minor significance for the pitching motion but is more important 
for the heaving motions. As will appear, since the effects of heave on the 
mooring-line forces are relatively minor compared with those of pitch, 
neglecting these coupling terms in the motion equation of the free-floating 
ship seems justified and simplifies the analysis significantly. 

For the moored ship, the heaving motion is influenced by the restoring 
force of the chains.  The restoring force Fv for the bow and stern chains 
can be calculated from the vertical mooring-line force 

V,  .     = - V,  .     + c(x - P6) - d(z + L6)    (13) 
(x'z)stern     (°'o)stern 

V(x,z)K    = " V(o,o)K  " C<x + P9> " d<2 " L9>      <14> v   bow       v   bow 

Addition of Eq. (13) and Eq. (14) gives 

F = - V,  .     - V,  x   - 2dz (15) 
' 'stern       bow 

The constant forces V,  ,.     + V,  s   act downward on the ship and 
(°>°) _      (°.o),_ stern   v  'bow 

increase its displacement.  Generally, this increase is very small and may 
be neglected.  Consequently, the stiffness coefficient in heave for the 
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moored  ship becomes 

Kzz " O^s + 2d> <16> 

where A is the horizontal cross-sectional area of a ship at the still- 
water surface.  The first term on the right side of Eq. (16) represents 
the vertical force due to the displaced bolume of water; the second term, 
the force due to the mooring lines on the bow and stern of the vessel. 

The coefficient d appears to be very small compared with pgA , and 
consequently the bow and stern mooring lines have an insignificant effect 
on the heaving motion.  Likewise, the other mooring lines already neglected 
in Eq. (16) have no effect on the heaving motion. 

Following Eq. (1), the equation of motion in pitch of a free-floating 
vessel may be written, if coupling with other modes of movement is neglected 
as 

M•&' + NQn9 + K„„9 = AF
6 ejU3t (17) 96    96    99     ex N ' 

where 

K99 = P8JY 
The restoring moment (K 9) of the free-floating ship is increased when 
the ship is moored. 

is 

The total moment of the vertical components of the bow and stern line 

Mv=- (L-P9) V +(L + P9) V (18) 
N  'stern 'bow 

= 2cLx = 2cpL9 - 2dL 0 

+ P9 /V/  N     + V,  N  A + r ( (o,o) .      (°,o),  ) V. ^  'stern   x  'bowy 
2dz (19) 

are 
The moments due to the horizontal forces in the stern and bow lines 

^ = - (P + L0) H + (P - L9) H (20) 
v   stern 'bow 

2 
= + 2apx - 2ap 0 - 2pbL0 

-^CH(o,o) ,   +H(o,o), y 2bzL0 (21) 
V     stern   N '  bowy 

the moments due to vertical forces in the mooring lines perpendicular to 
the long axis of the ship are 

M
P - 

4(dlL2 + PV(o,o) +Pdlz)6 <22> 
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where 
cL   =  coefficient determining  the  influence  of  the vertical movement 

Neglecting  the higher-order  terms,   the  resultant moment due  to all 
mooring-line  forces  is 

r2ap2 + 2(b + c)pL K   + M    + M    =  2(ap + cL)   x 

+ (V       . + H.       N + 2dL + 4d.L\ 
V (0,0)   ^ (0,0), * y stern x   '     bow 

- (v.      . + V.      ,        +4V,      N \~| 6 (23) 
V (0,0)   _ (°.°), (0,0) /J stern x       'bow x p 

Consequently,   the   total  restoring moment is  a   tunction of x and 9, 
and  the equation of motion may be written 

M  'e + NrtQe + KQQe + K   X = A?
9
   e

iWt (24) 
09 99 96 9x ex 

where 

= pgj    + |2ap    + 2(b + c)pL + (H.       , + H,       . 
Y       L V (0,0)   . (0.0), T x stern bow 

+ 2dL + 4d.LN)L - (V       . + V,       , + 4 V,       . \ 1       (25) IJ       V (o,o)   _ (0,0), (o,o)^J stern '     bow 

Kex =  -   2(cL + aP) (26) 

Thus,   the  three equations of motion are 

M    x+N    x + K    x + K    9  = AFX    eJU)t (27) xx xx xx x9 ex 

V + V + K909 + K9xx = Af9ex ^ <28) 

M    z + N    z + K    z = AFZ    ej<Ut (29) zz zz zz ex 

It will be noticed  that Eqs.   (27)  and   (28)   are  coupled.    Anticipating 
a  solution 

x = AejU)t 0=BejU,t (30) (31) 

Where A and B are  complex quantities, then 

x=juAejU)t x = V A ej(ut (32) (33) 

e =  ju)BejU)t 9=-u)2BejU,t (34) (35) 

Introducing these complex quantities in place of the real quantities 
in Eqs. (27) and (28) gives 

C-U)2M  + ju)N  + K ^) A + K B = AF* (36) V   xx  J xx   xxy     xg     ex x ' 
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)x        V        99       J    90        99^ 
AF6 

ex 

We now introduce the impedances 

and 

Z  = -u> M  + jujN  + K 
XX XX        XX     XX 

zee - -« M
ee 

+ J«*ee + K9e 

which simplifies Eqs. (36) and (37) to 

Z A + K „B = AFX 
xx    x9     ex 

Kn A + ZA „B = AF6 
9x    99     ex 

(37) 

(38) 

(39) 

(40) 

(41) 

Solving for A and B gives 

FX        K 0 ex        x9 

F6 ex 

A = 

xx 

!K. 
'9x 

-99 

x9 ! 

J99 

and     B 

9x 

xx 

9x 

ex 

F6 ex 

x9 

-99 

(42) (43) 

by which amplitudes and phase lags with the exciting periodic waves can be 
calculated. 

For the vertical motion, a complex solution is anticipated 

z - CeJ(ut (44) 

where C is a complex quantity.  Following the method for x and 9, we obtain 

Z„C = AFZ (45) 
zz    ex x ' 

where 

Z  = -u) M  + jujN  + K zz      zz  J zz   zz 
(46) 
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Thus 

FZ 

C = ~ A (47) 
7z 

The fluctuations in the mooring cables may now be determined.  For 
example, rewriting Eq. (6) 

H,  .     = H.  .     - ax + (ap + bL)6 + bz 
(x>z) *. (o,o) . N ' 'stern   x   stern 

If we introduce the following expression for the force fluctuation in the 
mooring cable, which is a function of wave amplitude and frequency 

H ..  (A,u)) = - ax + (ap + bL)6 + bz (48) 
stern 

then 

Hstern(A,u)) = Ref- aA + (ap + bL)B + b(fJAe
ju)t  (49) 

_   In many instances, the term K  in Eq. (40) is_yery small compared to 
Z  , and K  in Eq. (41) is very small compared to Zflfl •  Then the pitch and 
surge* of the moored ship are essentially uncoupled, and 

FX 
ex A (50) 

Z xx 

B^^ (51) 

ee 
The coupling is important, however, for the resonance movement in surge, 

which is generally not significantly damped, and in that case Eqs. (42) and 
(43) have to be used. 

If coupled motion for the free-floating ship in pitch and heave are 
important--for example, for a ship with the center of mass not approximately 
in the middle of the ship as described by Korvin-Kroukovsky (1961)--the 
equation of motion of this vessel when moored becomes 

M x + N x + K x + KG= AFX ejtut        (52) 
xx    xx    xx    x0     ex 

Kexx + V + W + Keee + V* + V* + Kezz = Af!x eJu>t <53> 

M*9' + *V + Kz6
e + MzzZ + NzzZ + KzzZ - Alex ^ <54> 

or using the mechanical impedances Zfi and 7.  fi, similarly Z  as in Eq. (38) 
the equations of motion may be expresled: xx 

?x 
Zxx A + Kx6 B - AFex (55) 
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Krt    A + Z„„  B + Z„     C = AF6 

0x 08 0z ex (56) 

Z.B + Z       C = AF z9 zz ex (57) 

This set of linear equations may be solved by using Cramer's rule, writing 
for the determinant of the system 

Zxx  Kx9 

The unique solutions are given by 

0 

K9x  Z90 zez 

7    Z 
'"Z9   zz 

(58) 

A=^A B = -2- A 
A 

C - A A (59)(60)(61) 

where Ax, AQ, A are the determinant forms obtained by replacing the elemen 
of the first, second, or third columns, respectively, of Eq. (58) by F 
F8 , YZ   . e 

ex  ex 
ex 

For a unit wave amplitude, the complex numbers A, B, and C, which are 
frequenty dependent, are generally called complex response operators and 
written as T  (u>) , T  (u>), and T „(o>)-  The real part of these complex oper 

xfl     9 T] zj] 
tors is that part of the response,which is in phase or 180 deg out of phase 
with the wave and often indicated as c „(u>), c  ((«), and c _(u>).  The 

imaginary part of the complex operators is that part which is 90 deg or 
270 deg out of phase with the wave and is indicated as q _(ou), qQ„(ai), and 
q ^(w) (see Korvin-Kroukovsky (1961). 
zT| 

xfl W 

SHIP MOORED BY BUOYS WITH UNIFORM WAVES HEAD-ON 

The equations of motion for a ship using mooring buoys can be derived 
in a fashion similar to that for the ship using mooring cables only.  In 
this case, the motions of the buoys have to be considered in addition to 
the motions of the ship. 

Considering a mooring configuration in Fig. 4, it will be noted that 
the relative vertical motions between the buoys and the ship will induce 
small horizontal displacements between the buoys and the ship, thus rela- 
tively small force fluctuations in the lines between ship and buoy. Con- 
sequently, the heaving and pitching motions of the ship are considered as 
of no importance to the forces in these lines. This is naturally not the 
case for the heaving motions of the buoys. 

Assuming again a linear relationship between forces and movements, 
and neglecting the pitching of the buoys, the equations of motion for waves 
with this height of the system neglecting damping in surge become 

M, x. + N .  x + a x. + Ki 
xx <X1" x2) b z, n Juot 

(62) 



RESPONSE OF OFFSHORE-MOORED SHIPS TO WAVES 743 



744 COASTAL ENGINEERING 

M2    X2 + Kl   ^x2  " Xl^ + K2   ^X2  " X3^ xx 

M_    x_ + N„    x + K„   (x_  - x„)  + a x_ + b  z„ 
xx xx 

Mj_ 2^ + NL z + [pg (2 L1B1) + d] zL - cxL 
zz      zz 

M3  Z*3 + N3  Z + [p8 (2 L3B3) + dJ Z3 + Cx3 
zz 

^rx         loot 
- F2       eJW 

ex 
(63) 

- FX       e^ 
ex 

(64) 

= Fj^       eJ 

ex 
(65) 

ex 
(66) 

In many instances, in mooring with buoys, the connection between the 
ship and buoy is made with a cable that is relatively light in comparison 
with the heavy chains used on the buoys.  If these cables are placed in 
high tension, the horizontal movements of the buoys and the ship are prac- 
tically the same, and it may be assumed that x. = x„ = x_.  Then Eqs. (62) 
through (66) reduce to 

(M   + M   + M  ^) x + MSI   + N2 ") x + 2ax - bz + bz 
XX      XX      XX XX      XX 

-(ij  +F"  +F
X ).J»t (67) 

ex    ex    ex 

Mi   zi + Ni   Zi + [p8(V + d] zi " CX = *i    eJU)t (68) 
xx      zz ex 

M3 Z*3 + N3 Z3 + [p8(ATr) + d] z3 + ex = F
Z  ej(Ut      (69) 

zz      zz ex 

In Eq. (67), the virtual masses of the buoys are small compared with 
the mass of the ship, and also the horizontal wave forces are small compared 
with the wave force acting on the ship; consequently, the effects of the 
buoys in this horizontal movement of the ship may be neglected.  Generally, 
the natural frequency in heave of the buoys is higher than the frequencies 
of the waves, thus the terms Mz and Nz are small compared with the term 

pg(2LB) + dj and may be neglected in our initial investigation of the 

ship's movement.  Disregarding the above-mentioned terms, introduction of 
Eqs. (68) and (69) into Eq. (67) gives 

M2 X+CN1  + N2 ) * + fo - (pglbC+ d)} 
X = (+ (pgAb + d) Fl 

?z 

xx xx xx r    rr TT ex 

 £ FZ      + FX   ^ °ja)t 

(pgA„ + d)  F3„ + \J 
¥<      +K     )e^ (70) 

TT ex 

This result is important, since in principle it enables the design of 
a mooring which, at the resonance frequency 
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1/2 

x 

2a -  2bc 

pgA + d 
TT 

M2 
XX 

(71) 

the excitation term on the right side of Eq. (70) becomes small by proper 
placement of the buoys. 

SPREAD-MOORED SHIP IN LONG-CRESTED 
IRREGULAR WAVES 

It appears that the actual wave condition in the ocean can best be 
represented by use of the model of a random process as derived by Neumann 
and described by Pierson, Neumann, and James (1960).  Statistical values 
such as average wave height are given, not values of the environment as a 
function of time.  The sea is taken as a summation of a large number (or 
as an integral of an infinite number) of uniform wave trains, each with 
different amplitudes and directions superimposed in random phase.  The 
profiles of the individual waves are assumed to be sine curves according 
to Airy's Theory (Johnson (1951)). 

Techniques are available to predict the amplitudes of the waves and 
their distribution over the frequency range from wind velocity, wind dura- 
tion, and the fetch. Generally, the result can be presented in the form 
of a wave spectrum, which is the distribution of the mean squares of the 
wave amplitudes in a given increment of the frequency (spectral density) 
over the wave frequencies. 

In the following analysis, it is assumed that the waves are unidirec- 
tional and meet the ship or submerged vessel head on.  This case is realis- 
tic, as it represents the crafts moored in swell. 

Following the work by St. Denis and Pierson (1953), the relation be- 
tween the spectral density of wave and ship responses is given by 

Sr(») = SW(U>)[T(U>)]
2 (72) 

where 
S (cju) = spectral density of the response in a particular variable 

(displacement, strain, etc.) 
S (uu) « spectral density of the wave 
w J 

T(u)) = ratio of response in a particular variable to wave amplitude 
(complex frequency factor) 

If the spectrum of the waves if given, the spectrum of the response 
can be calculated by Eq. (70).  The mean square of the response is then 
given by 

~    uo m r   -,- 
a   = }  S (o))dai = J S (»») T(u))plu> (73) 

o' o' 

It has been shown by Longuet-Higgins (1952) that for a relatively narrow 
band of wave frequencies, such as is the case with swells being assumed 
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here, the probability distribution of the wave amplitudes tends to be 
Gaussian if the frequency factor has nonzero values in the range of wave 
frequencies.  Consequently, it may be expected that the probability dis- 
tribution of the response amplitudes is also Gaussian. 

Longuet-Higgins calculated important statistical relationships for 
the narrow-frequency spectrum, which were consequently tabulated by Pierson, 
Neumann, and James (1960); for example 

R  = 1.25 0   (Average response amplitude) 

R1 ._ = 2.0 a (Average response amplitude of 
the 1/3 highest responses 
equals significant response 
amplitude) 

In many instances, the response spectrum may not be considered to be 
narrow, and the expected number (M ) of maxima of the response per unit 
time exceeding the value of the response R(t) = a can be expressed after 
Bendat (1958) as 

HI 
a 

where 
06 2 

E[R'(t)2] - J UJ2SW [T(a))] du> (75) 

Thus, this presentation introduces the probability concept into the calcula- 
tion of movements and cable stresses. 

EFFECT OF THE NONLINEAR MOORING-LINE FORCES 

In the analyses of the response, it has been assumed that the restor- 
ing forces of the cables are linear with the displacement by use of Eqs. (2) 
and (3).  This assumption will introduce certain errors in the calculated 
response and the mooring-line forces. 

Considering the spread-moored ship, it has been seen that the pitch 
and surge are coupled because of the bow and stern mooring lines. 

If the total horizontal restoring force of a system is plotted as a 
function of the horizontal displacement for different pitch angles, a graph 
of the type presented in Fig. 5 will be obtained.  In this graph the lineari 
zation calculated by Eqs. (2) and (3) is also plotted. 

The nonlinearity of the total restoring force is much smaller than 
that of the individual cables. 

It will be seen from such graphs that force-displacement curves for 
different pitch angles are essentially parallel for equal distances over 
the expected range of pitch angles. 
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It is assumed that movements in surge extend into the nonlinear 
range.  The horizontal restoring force may now be written, following the 
procedures of Crandall (1961), by extending the linear Eq. (8) 

Fh = 2a[x + eg(x)] - 2(bL + ap)6 (76) 

where 
e  = small parameter modifying the nonlinear function 

g(x) = odd single-valued power function of x 

The values e and g(x) are chosen in such a manner that for zero pitch 
angle, Eq. (76) is identical with the force-displacement curve obtained by 
use of calculations of the catenary equations. 

The coupled equations of motion in surge and pitch for the ship in 
irregular waves can now be written by introducing the nonlinearity in 
Eq. (27). 

N „ r n K.A0 xx   .    ,   2a 
X+M~X+M 

XX XX 

x + eg(x)] + s
X^-= Ix(t) (77) 

N K K    6 

'i+ir-i+ir-*+ir-mh•        (78) 
ee ee ee 

where  I   (t)  and Ig(t)  are  random functions,   both derived  from the wave 
spectrum. 

Equation   (77)  may be  rewritten by introducing  the  equivalent linear 
stiffness  coefficient K eq 

where 

x + 2ax + K    x + k    9 = I  (t)  + H (79) 
G ^[ xy x 

3=(Keq " alo)X "  6U,o 8(X) (80) 

uj2    = 2a/M (81) 
0 XX s 

X 

Assuming  that w  is   zero,   the mean  square  response of  the  system to 
an irregular sea with a particular spectrum is  found by Eq.   (73) 

a* =    I Sw(u>) [T<(«)] dco (82) 
o 

The spectral density S (UJ) is given from the assumed sea condition, and 
the square of the absolute value of the complex-frequency factor 

TT(U))   is obtained from Eq. (42) 
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fo^T 

FX 
ex 

F6 
ex 

6x 

x6 

Jee 

xe 

ee 

(83) 

where 

Z  = -<D M  + IUJN  + M K 
xx      xx     xx   xx eq 

Introducing Eqs. (83) and (84) into Eq. (82) 

-2 
a    = G  f x (O 

for  small variation of K       from ID     ,   Eq.   (85)   may be  expressed 
eq o s J r 

x 

(84) 

(85) 

a2 = G    [~1 + y (K      - m   ") I 
x w L V eq o yj 

-2 
where G    = a    =  spectral  energy of  the  response   for  ?  =  o 

wo 

d f 
^atK  = .2 
C eq   o 
eq > 

(86) 

(87) 

In the analysis with Eqs. (82) through (86) it was assumed that the 
remainder function E equals zero, which is naturally not the case; S is 
again a stationary random process just like I (t) and depends on the value 
of the equivalent stiffness coefficient.  A measure of its value is its 

expected mean square E £ 

The mean square of the remainder function S can be expressed by use 
of Eq. (80) 

E[E
2
] - K^q E[X

2
] -  2Kequ)^[x2 + exg(x)] + U£E[(X + eg(x)}2]       (88) 

This will be a minimum for fixing K  when 
eq 

OM) 
dK 

= 0 (89) 
eq 
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which results in 

|     Efxg(x)] I 
(90) 

Inserting Eq. (90) into Eq. (86) results in 

CTo 

E xg (x)] 
• 2 
x 

(91) 

The probability density of a random variable Y with zero mean value 
is 

f (Y) = -~ e"Y /2° (92) 

where a = standard deviation. 

tern 
The expectation value E xg(x)  in Eq. (91) 

, which would require knowing the response o 
is for the nonlinear sys- 

)f the nonlinear system. 
Fortunately, the term in Eq. (91) is to be multiplied by the small para- 

meter g, and the expectation value E xg(x)  of the linear system instead 

of the nonlinear system will induce errors of the second order. 

Consequently 
2 
o 

$  = 1 +    X3   J xg(x)e     u dx (93) 
-2      yemo -H»     -x2/2c

2 

x     r>    , v .      o 

a V2n a 

by which the effect of the linearization can be investigated.  The term 
y may be positive or negative. 

DISCUSSION 

The mathematical models presented here have shortcomings.  The most 
important one is the assumed linear relationship between the restoring 
forces and the displacement of the ship.  The effect of the nonlinearity 
of the mooring lines in the surge motion, which is particularly affected 
by the nonlinearity, was investigated in detail in the previous section 
of this paper, and a method was presented for calculating the ratio of 
the mean square of the nonlinear response and the linear response. 

Naturally, the methods of analyzing the response of the moored ship 
has the limitations that are imposed on the analysis of a free-floating 
vessel, and the direct force-displacement relationship established in 
the section about mooring-line characteristics limits the method to mooring 
in a few hundred feet depth as only to that depth are the dynamic effects 
on the mooring line considered small. 
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Unfortunately, no experimental data are available in the literature 
to check the analysis in detail. A paper (Wiegel (1958)) describing model 
tests performed at the University of California presents no detailed in- 
formation concerning the important characteristics of the vessel and its 
moorings, but by selecting a mooring with about the same characteristics 
in surge, one can obtain good agreement between experimental and calcu- 
lated values of the response of an 880-ton vessel (Figs. 6 and 7 by 
Leendertse (1963)). 

The design of moorings by using the formulas of this paper can be 
expedited considerably by graphical representation of the exciting forces 
and the impedances. 

Since the impedance concept is introduced in the calculating of the 
responses, the procedures used for electrical circuit design and the design 
of servomechanisms appears to be a powerful tool for the numerical cal- 
culation of responses.  Graphical representation of exciting forces and 
the impedances by use of complex plane diagrams enhances the understanding 
of the complicated phase relationship between waves and responses (Chest- 
nut (1951)). 

In practically all cases, the surge response of the vessel is the 
main contributor to high forces in the mooring lines.  This is caused by 
the fact that very limited damping is available in this mode of movement. 
In principle, a reduction of the surge response is possible by two methods: 
namely, by increasing the damping or by mismatching the natural frequency 
in surge with the main range of frequencies of wave excitations.  The 
application of the first method is limited because it is difficult.  In 
an incidental case, surge movements have been limited by the introduction 
of damping devices in the mooring lines.  Since wind and currents, whose 
effects are not discussed here, impose certain requirements on the mooring- 
line tensions, the applicability of the second method is often also limited. 

In the previous sections of this paper, a few relatively simple but 
realistic cases where the ship was moored in the longitudinal plane of 
symmetry were considered. Mooring.lines in directions other than the main 
axis will introduce coupling between many more modes of movement than is 
studied in this paper. 

Weinblum and St. Denis (1950), in their now classical paper, presented 
a method for calculating the uncoupled motions of an unrestrained ship in 
its six degrees of freedom in regular waves with arbitrary heading.  This 
work has been expanded by Pierson and St. Denis (1953) for the movement in 
irregular waves with a directional spectrum. 

If the motions of the free-floating ship are considered uncoupled, 
the same ship in a moored condition will have coupled motions due to the 
mooring lines.  For an arbitrary mooring, for example, the linearized 
equation of motion in surge becomes 

M    x + N    x + K    x + K    y + K    2 + K„e+K,J»+K    cp=FX    Ae j(Ut 

xx xx xx xy xz x8 x\|jf xcpY        ex 

(94) 
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• Calculated value 
—Test results of 

Wiegel, runs 54-64 

Wave frequency, eu(rad/sec) 

15 10        8 6 
Wave period (sec) 

FIG  6  EXPERIMENTAL AND CALCULATED VALUES 
OF RESPONSE OF AN 880-TON VESSEL 

Water-surface elev- + R 
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gravity (ft) -8 
+ 8 
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-8 
+16 

Surge (ft) 0 
-16 
+0 1 
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-0 1 
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Surge 

-Calculated results for 
A=5 6 ft,   aj=0 6 rad/sec 

Experimental results by 
Wiegel (Fig 13 of Heave   H? 
Ref  13) 

FIG  7  COMPARISON BETWEEN CALCULATED AND MEASURED 
RESPONSES OF A MOORED SHIP IN UNIFORM WAVES 

Approximated ship 
dimensions used 
in calculations 

)      Pitch 

Wave direction 
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The equations of motion in the other modes are similar, and the solution 
of response operators follows the pattern of Eqs. (52) to (61).  The coef- 
ficients K , K , etc. , depend on the mooring lines and can be calculated 
in a mannerysimilar to that for the spread-moored ship in waves head-on 
(e.g., Eqs. (6) through (8)). 

The procedure for the investigation of the nonlinear effects is not 
limited to unidirectional waves.  For a directional wave spectrum, con- 
taining only energy in two quadrants such as the directional Neumann wind 
wave spectrum, Eq. (82) becomes 

_?    *     +rT/2 ? 
°x   I J   S0»,B)| T («».P " X)|dP du)    (95) 
X °      -TT/2 

where 
P « angle between direction of wave propagation and the coordinate 

system of the ship 
X « angle between center of the directional wave spectrum and the 

coordinate system of the ship 

The directional complex response operators in Eq. (95) is calculated 
by use of Eq. (83) if one takes into account that the excitations F  and 
F  are functions of the wave angle.  The procedure in this section for 
nonlinear effects is otherwise generally valid. 

In cases where the response operator of the linearized system is 
peaked within the frequency range of the maximum wave amplitudes, the 
gamma (y) coefficient in Eq. (86) will be small and consequently the 
effect of the linearization used upon expectation values of the nonlinear 
response amplitudes will be very small. 
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APPENDIX 

A = wave  amplitude 
A    = horizontal  cross-sectional area  of  a  ship at  the  still water 

surface 
A    = horizontal  cross-sectional  area  of a  buoy at   the   still water 

TT surface 
A" = complex value of the movement in surge for a wave with unit 

height 
a,b,c,d = coefficients in linearized mooring-line equations 

B~ = complex value of the movement in pitch for a wave with unit 
height 

C~ = complex value of the movement in heave for a wave with unit 
height 

d. = coefficient in linearized mooring-line equations 

E = expectation value 
F = resultant horizontal component of the restoring forces of the 

mooring cables 
—s 
F  = complex value of the exciting force or moment in the s mode 

of movement for a wave of unit height 
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f()  =  function 

T     = complex value of the exciting force or moment per unit mass 
ex     r 

G = spectral energy of the response for e = o 
g = acceleration of gravity 

g(x) = odd-single valued p'ower function of x 
H.  v = horizontal force at the holding point (0,0) 
(0,0) 

H,  s = horizontal force at the holding point (x,z) 
(x,z) 

h = vertical distance between the holding point of a mooring 
line and the sea bottom 

I (t) = random (force) function, derived from the wave spectrum 

I (t) = random (moment) function, derived from the wave spectrum 
Jy = inertia moment of the horizontal cross-sectional area of a 

ship around the y axis 
K  = equivalent linear stiffness coefficient 
eq 

K  = stiffness coefficient in force equation of the s mode for the 
movement in the T mode 

k ^ = stiffness coefficient per unit of mass 
st r 

L = half-length of a ship 
M, = total moment of the horizontal components of the bow and 

stern lines 
M = total moment due to the vertical forces in the mooring lines 

perpendicular to the long axis of the ship 
M  = virtual mass or mass inertia moment in the force on moment 

equation of the s mode for the movement in the T mode 
M = total moment of the vertical component of the bow and stern 

lines 
M = expected number of maxima of the response per unit time 
a  exceeding the value of the response R(t) = a 

M.   = virtual mass in the x movement 
XX 

M„  = virtual mass in the x movement 
XX 

ML  = virtual mass in the x movement 
xx 
M" = added mass 

N  = linearized damping term in the torce equation of the s mode 
for movement in the T mode 

p = vertical distance between the holding points of a mooring line 
and the mass center of the ship 

R  = average response amplitude 

R = periodic force due to other modes of movement 

R(t) = response amplitude 
Rl/3 = avera8e response amplitude of the 1/3 highest responses (i.e., 

of the highest third of all amplitudes) 
S = total length of a mooring line 

S (u>) = spectral density of the response in a particular variable 
s = general indication for mode of movement 
T = total force in a mooring line 

T(io) = ratio of response in a particular variable to wave amplitude 
(complex frequency factor) 
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T(uo)  = square of the absolute value of the complex frequency factor 

t = time 
V,      . = vertical force in a mooring line at the holding point o 
(0,0) 

V,  >.  = vertical component of the force in the mooring lines perpendic- 
^ '  p  ular to the long axis of the vessel 
V,  % = vertical force in a mooring line at the holding point (x,z) (x,z) 

w = net weight of a mooring line per unit length 
x,y,z = Cartesian co-ordinate axes 

Y = random variable with zero mean value 
_     2 
Z  = -on M  + IUJN  + K  (impedance) 
ss      ss  J  zz   zz 

a = a value of the response 
(3 = angle between direction of wave propagation and the co-ordinate 

system of the ship 
df(K ) 

eq 
Y = coefficient = —-r^—— 

eq 
e = small parameter modifying the nonlinear function 
9 = pitch angle 
H = remainder function (Eq. 79) 
C7 = root mean square 

a = root mean square of the response of the assumed linear system 
in surge 

a    =  root mean square of the response of the nonlinear system in 
surge 

T = general indication for mode of movement (used only as a sub- 
script) 

9 = angle of roll 
X = angle between center line of the directional wave spectrum 

and the co-ordinate system of the ship 
U) = wave frequency 

(0  = natural frequency in the s mode 
s 


