




Chapter 13 

THE COASTLINE OF RIVER-DELTAS 

by W.T.J.N.P. Bakker and T. Edelman 
Coastal Research Department of the 
Rijkswaterstaat. The Hague, Netherlands, 

INTRODUCTION. 

The purpose of this paper is to investigate the shape of 
the coastline of a river delta on a coast, along which sediment 
is transported by waves only. In order to make the problem 
suitable to a mathematical treatment it is necessary to 
simplify to a large extend the processes occurring in nature. 
We assumed: 
le. There are no tides and no tidal currents. 
2e. The influence of currents on the sedimenttransport will be 

neglected. 
3e. In the beginning the coastline is a straight line ( x -axis). 
4e. The fore shore has a constant slope until a depth D{ 

the influence of the waves reaches until this depth Dj 
further seawards the waterdepth has a constant value D. 

5e. The mouth of the river lies in the origin of the system of 
coSrdinates, and stays there. 

6e. The river continually brings a constant quantity of sediment 
into the sea. 

7e» Waves with a constant height and a constant wave lenght are 
approaching the coast continually under a angle ft with the 
x - axis. 

8e» Refraction, diffraction and reflexion of the waves are 
neglected. 

9e. The relation between the quantity of sediment Q, trans- 
ported by the waves along the coast, and the angle oi. be- 
tween the wave crests and the coastline, will be simplified 
in such a way, that an analytical solution of the partial 
differential equation will be possible. The next paragraph 
deals with this problem. 

THE TRANSPORT FUNCTION 

The sediment transport along shore, caused by oblique waves, 
is often represented by the formula: 

Q • Q^ sin 2dL 

in which QLis the maximum value of Q, occuring whenoi • 45°. 
EDELMAN (I963) showed, that this formula is a fair approximation 
of the transport in the breaker zone, GRIJM (I960) showed, that 
an application of this formula to the delta problem leads to a 
very complicated partial differential equation, the solution of 
which seems to be possible only by means of a computer or a 
graphical method (GRIJM 1964). 
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200 COASTAL ENGINEERING 

lARRAS (1957) produced experimental data on the relation "be- 
tween Q/Q and<V, (Table I), that are not in agreement with the 

m 
formula: Q • ^ sin 2ot 

TABLE I 

ot - o 10 20   30 40 50 60 70 80 90 degrees 

Qm 
0,30 0,57 0,70 0,83 0,98 0,70 0,28 ? ? 

Considering the problem from a theoretical point of view, 
however, it seems to be improbably, that any single formula or 
any single series of data on this topic could be correct. Since 
refraction of waves depends on wave-height and wave-lenght, it 
seems to be impossible to set up a simple formula, covering the 
transport by all types of waves occuring. 

The formulae and data, proposed by investigators in this 
field, until now, have, however, some things in common. Trans- 
port is increasing from zero atot = 0 towards a maximum at a 
value of «sl lying somewhere between 40 and 65 degrees. At 
greater values ofo(, the transport decreases and perhaps be- 
comes zero at oL « 90 . 

Since we want a solution of the delta problem only in a 
general way, in order to obtain a general insight into the be- 
haviour of the coastline in the neighbourhood of a river mouth, 
it seems to be admissible to make use of a new transport 
equation, provided, that this equation covers the above mention* 
characteristics in a general way. Moreover, the new equation 
must lead to a delta-equation of which the solution can be ob- 
tained along a analytical way. 

The authors believe to have succeeded in finding an 
equation which sufficiently satisfies these conditions* For that 
purpose the range of<X. was split up into two areas* The transpoa 
within the first area, in which 0 <T tan«(.-<. 1*23 is described 
by the formula: 

Q " Sa Kl tan "*• 
In the second area, in which 1.23 •<  tanoC<T O&     tne formula 

Q - Q^  
^ tan«L 

will sufficiently cover the few data known about wave-transport 
in this area. 

1 - K9  - 1.23. 
Kl 
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The maximum wave transport according to this formula 
would occur at tanot«= 1»23 or d.S& 51 . 

The data and formulae given in this paragraph are plotted 
in figure 1. 

THE DELTA EQUATION 

Prom the continuity equation it follows that: 

•»*  vr 

If pis the angle between the coastline and the x - axis, 
and (S is the angle between the wave crests and the x - axis, 
figure 2 shows that.' oC = ft - P 

Therefore: 

u»d.*-t»~lfi-(>)* W-fc-y UA*fc (Lz_ 

Area I 

> 

Area II 

% ' + *+%• 

>H, 

thus 

KU+ngfr 7>T 

1'   **.& 

thus 

-^^H^%) 
Putting t = J ( X + tan>   > T' we obtain 

K b^-^f^f 
Hi -&• is»-sy* 

2L 
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If Q is expressed as a volume per time-unit, t possesses 
m the dimension of a surface. 

SOLUTION OP THE DELTA EQUATION 

If we put: y » tnf(u) and x = utm we obtain: 

Area I 

M.-4-fcv    d> 

%b^%r>~4 
Area II 

vcx 

t disappears, if we put: n * m = £ and we obtain: 

3 Jit.     eM 
The delta equations become 

4. 
I'4" *«"!«#) 

.l-u.4. 
cU<v -ZK cLU?- 

v^f-if -f Ux <oi*^ 

The solutions of these non-partial differential 
equations are: 

i^NW^J   J 
in which 

*/-=• 
U. 4- 

i\mk 

±,hemA/(b 

&H• vfr f ^"^ 

A and a are integration 
constants. 

ur- 

in which 

^ 

TH-i U/ *tu>- 

B and b are integration 
constants. 
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The curve f(u) is the basic curve of the deltaproblem; 
a function y • f(x) at any time I can be obtained from the 
basic curve by central projection from the origin of the 
system of coordinates, multiplying with the factor yt* 

The basic curve of area I has a hyperbolic shape; it 
possesses two asymptots running through the origin. 

The basic curve of area II has a parabolic shape; it 
does not possess asymptots. 

x - 

INVESTIGATION ABOUT THE STABILITY 

Introducing the new coordinates x and y of which the 
axis is taken parallel to the wave crests, we obtain 

Area I 

*'!&--(; **~>jjf 
Area II 

~K i dtu't m •t =r  I 4- ^xc)U 

or, changing the variables: 

>r 

v?e 

The solution with separated variables is: 

In area I the amplitude decreases with t. In area II, 
however, the amplitude increases with t. 

If we understand these solutions to be disturbances, 
superimposed upon the solutions of the foregoing paragraph, 
we see, that in area I such a disturbance will decrease with 
time and, at last, will disappear. In area II, however, such 
a disturbance will grow larger and larger with time (fig. 3). 
The original curve grows with VT,  but the disturbance grows 
with e . Therefore, in area II the disturbance will super- 
sede the original curve after some time* 

Obviously, the original solution (the basic curve) is 
stable in area I, but unstable in area II. 

This is an important conclusion. It may be seen from 
figure 1, that two different values of tan ot are associated 
with every value of tJ • That means that in every point of a 
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coastline two different directions can be found, along which an 
equal quantity of sediment can be transported by the waves. Since 
we have found that one of these directions is unstable, this 
ambiguity is eliminated from the problem. 

Secondly, the problem of the delta shape can now be re- 
stricted to the oases in which tan ft has values between zero 
and K-, because a straight coastline is already unstable in it- 
self if tan(b>K2. 

If tanjb<K_, stable solutions can be obtained only if the 
coastal curves are in accordance with the formula of area I. 
This solution is an asymptotic one. In a stable delta, therefore, 
the influence of the river will be always perceptible, at both 
sides, towards infinite distance. 

SHAPE OP THE POINTED DELTA 

Using the foregoing formulaejwe calculated f as a function 
of the quotient *-    (f • f when u » o; Q^is the quantity of 

sediment, transported by the river) the result of which may be 
seen from figure 4. In figure 5 we show some basic curves of 

stable deltas if -r- has the maximum value associated with ym 

distinct values of £ • If 7!— exceeds this maximum value, the 
right hand ^ide of the delta becomes unstable. (Area II). 

Presumably, this type of instability means, that in nature 
spits will occur at the lee side of the delta. 

The quantity Qt is related to Qm by the angle between the 
two tangents in the point of the delta. It can easily be seen, 

.    Qt 
that the ratio z.    • _  can never exceed the value 2. 

Qm 

If £> 2, no solution at all can be obtained from our 
formula. It seems therefore, that the method in which the pro- 
blem has been approximated until now, is not quite satisfactory; 
because we want to know the shape of a delta for the whole 
range of £  between zero and infinity. Moreover, our pointed 
deltas possess the pecularity, that always a distance from the 
origin to the sea exists, which is shorter than the distance 
between the origin and the point of the delta. A better appro- 
ximation of nature may be obtained if we alter some of our 
basic assumptions. 
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THE BEHAVIOUR OP THE RIVER WITHIN THE DELTA 

In nature, a river will always try to take the shortest 
way to the sea. In the long run, and as an average, this will 
result in a delta with a more or less circular central part. 
In order to put this behaviour of a river into a mathematically 
usable shape, we made the following basic assumptions. 

le. The central part of the delta coastline is a circle with 
its centre in the origin. 

2e. The river provides every point of the circle with a 
quantity q, necessary to maintain the circular coastline. 

3e. At both sides the circular coastline is joined by coastal 
curves of the "pointed,,-delta-type, belonging to area I. 
Prom figure 6 it may be seen, that during a time-inter- 

val AS the circular part of the delta has grown with a 
quantity: 

D.R.(& +yL ),AR 

At the right hand side the waves have removed during this 
time-interval a quantity K-Q    tan *f^A $ and at the left hand 
side a quantity   KJ ££w "J*u* A .AT. 

During the time interval.4T the river has supplied a quant*- 

Obviously:   dt % r X^/^+ft]* #  f Kj^Wftf t*f*j4l 

or  s ^--i-'fe^^AJ^^nt*-^^- 
t, we find JJT-=*7^ and /J j^T JT £ *- 

Thus:   1 , £ *.%(plufp)fa+fu) 1~K,lU~rK4. U~J<fL) 

The circular part of the delta is stable if tant^ oi K2 

and Uu*)f>  ~^ Kp. Further conditions are 

Admitting instability in the circular part of the delta, 
we see that a coastal curve of area I cannot join the instable 
circular part tangentially. The condition of joining is 

K, tanct - H 
1  tanfL. 
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FIGURE  6 
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or K, tan tda » Kg 

tantfu • 

we find in these cases ,    i      i 

At the right hand-side another interesting case exists, 
in which the unstable delta causes erosion of the coast. 
In this case (figure 7)* 

+ Ji. 

RADIAL DISTRIBUTION OP Q^ 

If q • the quantity of river sediment per angle unit, 
continuity considerations lead to:       - 

in which , 

In area I   £ U*vtfi£ (^ )   ;    ££- fcj 4^ /~^V> and thus: 

In area II £/%** >KU\ ,'   ^.-^  -i~ aad therefore 

Thus:      in area I :     3, •Ctg^H-U^ + K*#^*+ <*.)» J 

in area II: 

In the direction OB, with tanO>    «L, we see that 
out of area I:      ^ _ KM^fi+kfl   +. * ^^ „. (^ j • 

and out of area II: ^ _^ _/<^ !i^2 HA^l"-^ J  * 

We see that in the direction OB a jump occurs / X'"X^ — 

(figure 8)* This jump has been caused by the discontinuity we 
introduced in the transport equation* If we choose a continual 
transport equation no jump occurs. For instance, if we choose 

Q = 0 4|n, 2-f   , then 
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FIGURE 7 

FIGURE 8 

Jump  between   area I and H With   Q = Qmsin  2ip 

RADIAL     DISTRIBUTION     OF   QT 
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being a ctirve without a jump (figure 8). 

With our discontinual transport equation q may grow nega- 
tive in area II. This occurs at first in the direction OB, 
where tan^» K2 and _ 

A negative value of q does not make sense. Thus the condition 
has to be fullfilled: 

or 

^Ul^da^Y 

If q • 0 at tany>B^(or r » iSJ6-*^ ) q is negative over the 
whole range of area II. 

With the traasportfunctions Q » Q sin 2^ , the minimum 
^lu. of , lies rt^-f^ .it^^u.^;-*^ 

from which follows the same condition: r >2.«~*/5 • 

Obviously, a minimum value of r exists in these problems. 
Roughly we may put the condition: 

BBL5AS WIfH PARTLY CIRCULAR COASTLIHE 

a) Left hand side 
There are two cases: 
al: U** <fL <£ iiCfl.     ; stable solution 
a2: ku.,,* > i^      ; the circular part of the delta 

T(. ^ *M. '     is partly unstable. 

Case al. 
The infinity condition provides: Z VJ& * — A V5XT/A.-J } (D 

Point L provides:     *2.\/KK  *^ * t*-c ••* TC t-*-*~A (2) 

^I^Jc-^: <5) 

u
x,,+ A' -* *?• <6> 

Eliminating A, a, u_ and f_ from these equations we obtain: 
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eT^*^ • 4- h^Sfi 

t-uO *£"•£'-^-"^'i"  u^vLt^tL-^^-N 
i 

and ^tf^JgHK|   •'+£%•     ^\ *E 

We find r as a function of^ by eliminating r^ along a 

graphical way from I and II. The result is shown in figure 9» 

Case a2. 
In the same way we find 

_ i- 

from which v- has to be eliminated in order to find r as a 
function o±tp-.  The result is shown in figure 9. 

b) Bight hand side. 
There are three cases: 
bl: **^fij £s 1^2. » s-fcable delta 
b2: h^tfn, *7  IC±. •    » *a® circular part of the delta is 

partly unstable; 
b3:  /-rtwf» - <**     i  erosion at the lee side (fig. 7); 

the circular part of the delta is 
partly unstable. 

Case bl. 
In the same way as before we find the two equations 

*-***' IJrJ^U- __ ! 

from which V_ has to be eliminated in order to find r as a 

function ofcp . The resulting curves are shown in figure 9. 

Case b2. 
We find s 
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i. 

Kl*+i 

^ififfi-efaj}   " V'-^wk-'/a 
a...  II 

Vx 

If we eliminate V 'from I and II, we find in this case, 

that always r^C&e^/S. Moreover, we find, that r decreases 
with increasing values of *ffc   . Ihis case, therefore, has 
to be rejected. 

Case b3. 

In a similar way we find here: 

tji.V7T-{i- H/*fc]V ^ftr **~y* 

*L  ~ <2.VT<r tOp . <2*^>p>     lx 
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Eliminating graphically Vpfrom both equations, we find 
r as a function of tan<fte. The result also is shown in figure 9« 

The minimum values of r (r . •» 2 oos^) in this case 
t>3 are higher than the maximum values of r, in the case b1. 
Therefore, if we maintain our condition: i,i£ 2.c^$ , a 
gap will occur between bl and b3» However, if we accept a 
certain disorder in the internal distribution of the river 
output , we can avoid this gap by calculating in case b3 the 
values of r between r <= 2cc*(b and the maximum values of case 
b1. ' 

OUTPUT OP THE RIVER 

If we divide the total output of the river: Q_ into 
two parts, Q_ and Q_, we are able to calculate r as a function 
of £ from the curvls of figure 9 by means of the following 
formulae:    ^   *&£_   _ ^   <2^ 

case a1*.   ^ - t: ^%»+i*^) > fL  *" *>  *~~f*- 

«»^    ft.-* -*-^'*'~/*M+c^. 

Our figure 10 shows r as a function off for some values of 
tan|J>, 

We can use the graphs of the figures 10 and 9 in the 
following way* 

Supposing, that the values ofiand^are given, we find 
the value of r from figure 10. Prom figure 9 we find, which 
values of*#.snd*fo( resp^) belong to this value of r. Also 
we can find out from figure 9, whether, at the left hand side, 
ease al or ease a2 occurs and, whether, case b1 or case b3 
exists on the right hand side. 

CONCLUSIONS 

1. We considered the theoretical shape of a partly circular 
river delta with o < ki/» gi.13 . If U-w/£>-4»23 
a straight coastline is unstable already in itself and a 
stable solution for the delta shape cannot be found. 
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2. With o < r*~fb~£hZZwe  found, that a stable delta is possible 
only if £^£j, in which 4,   depends on /3 . To i*^ a distinct 
maximum value r1 is associated. 

3. If £>i| , and r> r-, the circular part of the delta becomes 
partly unstable ana the internal distribution of river 
sediment becomes improbable. Erosion on the right hand 
coast occurs* 

4. If £>^>^the improbability of the internal sediment distri- 
bution comes to an end, but the circular part of the delta 
remains partly unstable and the erosion of the coast at the 
right hand side of the delta goes on.. 

5. Instability along the circular part of the delta (all other 
parts are always stable) probably means, that "spits" occur* 
The shape of spits has not been dealt with in this paper* 

6. Speaking in common language, we deduced that if the quantity 
of river sediment exceeds a certain amount, the delta becomes 
partly unstable and erosion on the lee side of the delta be- 
gins; the delta grows so large, that it is acting as a partly 
circular "groin" with erosion on its lee side and accretion 
on the weather side* 
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