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Chapter 13

THE COASTLINE OF RIVER-DELTAS

by WeTeJoN.Po Bakker and T. Edelman
Coastal Research Department of the
Rijkswaterstaat. The Hague, Netherlands.

INTRODUCTION.

The purpose of this paper is to investigate the shape of
the coastline of a river delta on a coast, along which sediment
is transported by waves only. In order to make the problem
suitable to a mathematical treatment it is necessary to
gimplify to a large extend the precesses occurring in nature.
We assumed:
le. There are no tides and no tidal currents.
2e. The influence of currents on the sedimenttransport will be
neglected.

3e. In the beginning the coastline is a straight line ( x -axis).

4e. The fore shore has a constant slope until a depth Dj
the influence of the waves reaches until this depth D;
further seawards the waterdepth has a constant value D.

5e. The mouth of the river lies in the origin of the system of
co8rdinates, and stays there.

6e. The river continually brings a constant quantity of sediment
into the sea.

Te. Waves with a constant height and a constant wave lenght are
approaching the coast continually under a angle (3 with the
X - axise.

B8e. Refraction, diffraction and reflexion of the waves are
neglected.

9es The relation between the quantity of sediment Q, trans-
ported by the waves along the coast, and the angleol be~-
tween the wave crests and the coastline, will be simplified
in such a way, that an analytical solution of the partial
differential equation will be possible. The next paragraph
deals with this problem.

THE TRANSPORT FUNCTION

The sediment transport along shore, c@used by oblique waves,
is often represented by the formula:

q-qmsinzd.

in which Q is the maximum value of Q, occuring whenol = 450.
EDEIMAN (1963) showed, that this formula is a fair approximation
of the transport in the breaker zone, GRIJM (1960) showed, that
an application of this formula to the delta problem leads to a
very complicated partial differential equation, the solution of
which seems to be possible only by means of a computer or a
graphical method (GRIJM 1964).
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200 COASTAL ENGINEERING

LARRAS (1957) produced experimental data on the relation be-
tween Q/Qm andol (Table I), that are not in agreement with the

formula: Q = Qm gin 2ol

TABIE 1

ol=0 10 20 30 40 50 60 70 80 90 degrees

-g-o 0,30 0,57 0,70 0,83 0,98 0,70 0,28 2 2
m

Congidering the problem from a theoretical point of view,
however, it seems to be unprobably, that any single formula or
any single series of data on this topic could be correct. Since
refraction of waves depends on wave~height and wave-lenght, it
seems to be impossible to set up a simple formula, covering the
transport by all types of waves occuring.
The formulae and data, proposed by investigators in this
field, until now, have, however, some things in common. Trans-
port is increasing from zero atol = 0 towards a maximum et a
value of oL lying somewhere between 40 and 65 degrees. Af
greater values ofci.othe transport decreases and perhaps be-
comes zero atol = 90 .
Since we want a solution of the delta problem only in a
general way, in order to obtain a general insight into the be-
haviour of the coastline in the neighbourhood of a river mouth,
it seems to be admissible to make use of & new transport
equation, provided, that this equation covers the above mentione
characteristics in a general way. Moreover, the new equation
must lead to a delta-equation of which the solution can be ob-
tained along a analytical way.
The authors believe to have succeeded in finding an
equation which sufficiently satifies these conditions. For that
purpose the range ofd. was split up into two areas. The transpo:
within the first area, in which 0 < tand ~< l.23 is described
by the formula:
Q= Qm Kl tan o

In the second area, in which 1l.23 < tanodl< OO the formula
Q= Qm K2

tan o,

will sufficiently cover the few data known about wave-transport
in this area.

% = 2 = 1.230
1
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The maximum wave transport accogding to this formula
would occur at tand = 1,23 or oL& 51",

The data and formulae given in this paragraph are plotted
in figure 1.

THE DELTA EQUATION
From the continuity equation it follows that:
Sy
?‘i + -—Zr-D =0
Gz T
Iff is the angle between the coastline and the x - axis,

and 3 is the angle between the wave crests and the x - axis,
figure 2 shows that ol = {’s —(3

Therefore:
_ Tamp—wp  temp - FE
tomoﬁxtﬁ/‘"’[(”"(o) = 4..)-4_,,{5,‘1;.,“,/.\- i + ta.w/{a%:%
Area T Area II
@ - l(‘qw IM/ d . (2 - Kz ‘2”’:(
2 2
= K "““1/" - .51 - i + R
e !Lgtn l“"“"‘ﬁg’%. ('2 k'z‘i,., M/b—?’%
- or
?_‘:2. - - K "WQ .___?E:L'__.. }i: ‘lwt _é—_
x = i lgwcl* pc‘-w‘g{)ﬁ or &%(l + /b)(‘w _?_"1;)?:
thus thus
ﬂ' D . 31"‘ >
K, Gy 141w ' :;:; ? 7:%;?& G, [ 1+ )d;—.__?é_)ﬁ-rz,b
Putting t = %IE ( 14+ tan"@ ) T, we obtain
#y Py

7%1' - _él K . D = )Y
K — — Ka >y 12 . Pt
‘LI+W'%)¢ >t L"ﬂw/ﬁ 7&1:
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Ir Q is expressed as a
the dimenSion of a surface.
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volume per time-unit, t possesses

SOLUTION OF THE DELTA EQUATION

If we put: y = t°f(u) and x

Area I

n-2in d-
t v dut’

P<.(¢4-ta~p'£” “?;fL

e

utm we obtain:

¢t disappears, if we put: n = m = ¥ and we obtain:

oA e, ek s L ()

2

LH-W& f :y_

The delta equations become

2k i}ﬁ
) ‘W%

f-ut

The solutions of these non~partial differential

equations are:

w=-Ale :.o'r{E 'v-)+r«ﬂ
4 e [ ]

in which

u.+i‘um:é

A and a are integration
constants.

ws -B[c”t.zu)[f v)+éﬂ

"2V, .
‘7§'-{=w‘=1"""'//6 - QBZ%»)M‘}
in which
L teep
P A

fle) - "4

B and b are integration
constants.
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The curve f(u) is the basic curve of the deltaproblem;
a function y = £(x) at any time T can be obtained from the
basic curve by central projection from the origin of the
system of coordinates, multiplying with the factor Yt.

The basic curve of area I has a hyperbolic shape; it
possesses two asymptots running through the origin.

T™he basic curve of area II has a parabolic shape; it

does not possess asymptots.

INVESTIGATION ABOUT THE STABILITY

Introducing the new co8rdinates x and'§ of which the
X - axis is taken parallel to the wave crests, we obtain

Area I Area II
Kg%" L”‘w _Z: -—K_Ba{.‘__... ot
L" f’»t

GH

or, changing the variables:

- n )‘i’
-k‘.;z%,_ =C + Lﬂav(%)g;

The solution with separated variables is:

T O] ENCE S

In area I the amplitude decreases with t. In area II,
however, the amplitude increases with +.

If we understand these solutions to be disturbances,
superimposed upon the solutions of the foregoing paragraph,
we see, that in area I such a disturbance will decrease with
time and, at last, will disappear. In area II, however, such
a disturbance will grow larger and larger with time (fig. 3).
The o %ginal curve grows with V?; but the disturbance grows
with e®. Therefore, in area II the disturbance will super-
sede the original curve after some time,

Obviously, the original solution (the basic curve) is
stable in area I, but unstable in area II.

This is an important conclusion. It may be seen from
figure 1, that two djfferent values of tan ok are associated
with every value of o« That means that in every point of a
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coastline two different directions can be found, along which an
equal quantity of sediment can be transported by the waves. Since
we have found that one of these directions is unstable, this
ambiguity is eliminated from the problem.

Secondly, the problem of the delta shape can now be re-
stricted to the cases in which tan {* has values between zero
and K2, because a straight coastline is alreedy unstable in it~
self "if tan{b>K2.

If tanp<K,, stable solutions can be obtained only if the
coastal curves ga.-e in accordance with the formula of area I.
This solution is an asymptotic one. In a stable delta, therefore,
the influence of the river will be always perceptible, at both
sides, towards infinite distance.

SHAPE OF THE POINTED DELTA

Using the fgiegoing formulae, we calculated fo ag a function
of the quotient o (f = ‘fo when u = o3 Qtis the quantity of

gsediment, transported by the river) the result of which may be
gseen from figure 4. In figure 5 we show some basic curves of
stable deltas if %:7 has the maximum value agsociated with
distinct values of [3 s If at exceeds this maximum value, the
right hand fide of the della becomes unstable. (Area II).

Presumably, this type of instability means, that in nature
spits will occur at the lee side of the delta.

The quantity Qt is related to Qm by the angle between the
two tangents in the point of the delta. It can easily be seen,

that the ratio € = Q  can never exceed the value 2.
Qm

I£4> 2, no solution at all can be obtained from our
formula, It seems therefore, that the method in which the pro~
blem hag been approximated until now, is not quite satisfactory;
because we want to know the shape of a delta for the whole
range of € between zero and infinity. Moreover, our pointed
deltas possess the pecularity, that always a distance from the
origin to the sea exists, which is shorter than the distance
between the origin and the point of the delta. A better appro-
ximation of nature may be obtained if we alter some of our
basic assumptions.
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THE BEHAVIOUR OF THE RIVER WITHIN THE DELTA

In nature, & river will always try to take the shortest
way to the sea. In the long run, and as an average, this will
result in a delta with a more or less circular central part.

In order to put this behaviour of a river into a mathematically
usable shape, we made the following basic assumptions.

le. The central part of the delta coastline is a circle with
its centre in the origin.

2e. The river provides every point of the circle with a
quantity q, necessary to maintain the circular coastline.

3e. At both sides the circular coastline is joined by coastal
curves of the "pointed"-delta-type, belonging to area I.

Prom figure 6 it may be seen, that during a time-inter-
val AT the circular part of the delta has grown with a

quantity:
DOR.(% +7L ),A R

At the right hand side the waves have removed during this
time-interval a quantity K,Q tan ‘fR,AT and at the left hand

side a quantity K| if,. faw @
During the time interva AT the river has supplied a quantd

i Q- 4
i Obtvn.o;ls-ly. aT. g, = fo—[%*‘&.]/-\ﬂ t K, [t + gy ) AT

¢
or :-‘:21-2 "Zw [‘f‘t*'f)&)*‘cﬂ[,‘“r&*"‘“ﬁ)

Ifweput-R-rr—; "°find§§-z difd'a-'!"tt

Tus: % =g 2t (ke )(pgre) + 16 i 4 vty )

The circular part of the delta is stable if tam{’m s K,
and W(ﬁ_ = K,. Purther conditions are

hep<lowge< i . | """w/b<3"""‘ﬁ.<;,:‘fﬂ

Admitting instability in the circular part of the delta,
we see that a coastal curve of area I cannot join the instable
circular part tangentially. Tke condition of joining is

2

K, tan =
1 dl 't-:l;‘ﬂ_ .
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or K, tan QL,L= K,
ta.n(fm .
we find in these cases i 1
5= 52 i+ bodp)( i) + ‘Cz(!l:.},_ - i‘.wm,)

At the right hand-gide another interesting case exists,
in which the unstable delta causes erosion of the coast.
In this case (figure 7)°% <

- (el rmmte) -2

RADIAL DISTRIBUTION OF Qt’

If q = the quantity of river sediment per angle unit,
continuity considerations lead to: N

q-= x—:%—-g.D"e

Da@%ﬁ = “"Lzl’zw(“‘""* ,)

In area I [ i‘*"‘f‘"‘ ‘{1..) g=- K 4., /—--wif and thus:
i
‘%" DC Lz'hv a._,c.f
In area 1I and therefore
S_-‘ KI.‘Q'M mwf
Thus: ina.reaI q = "C.@M[H-‘uﬁe)*-i"’z"%['”'w‘/’o)

in area II: q ==k, g, __I:_l‘ ““"*:?_ +12* a1t le’s )

In the direction 0B, with tan = Ka, we gee that
out of area I: i‘: K’.%tu.k’.‘} + Jiiq"fmé“(‘w%) .

and out of area II: g  _ —i, G ‘?(g P 4}@,,(/“—‘-"75)

in which

We gee that in the direction 0B a jump occurs ' Q% ”J("

(figure 8). This jump has been caused by the discontinuity we
introduced in the transport equation. If we choose a continual
transport equation no jump occurs. Por instance, if we choose

Q=q 2in 2¢ , then
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FIGURE 7

FIGURE 8
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) i
5—%: 2%4.2«-{ and 4= ?.‘z,’-‘{q..tu-lnwy,) 4—.@12,,"04&?& (
being a curve without a jump (figure 8).

With our discontinual transport equation q may grow nega-
tive in area II. This occurs at first in the direction 0B,
where tanf= K2 and ‘ 2

- -
1= 14t ) — L2 G
A negative value of q does not make sense. Thus the condition

has to be fullfilled: 2

or > 2.02 GnrfR"

If q = 0 at ta.ntf =D (or » §l.’07"'/5 ) q is negative over the
whole range of area II.

With the transportfunction: Q = Qm gin 2¢¢ , the minimum
value of q lies at ¢ = .
‘( ﬁu.‘.. :%Q’-LZ‘»L“.L‘”%]_Q%
from which follows the same condition: r >L¢--(6 .
Obviously, & minimum value of r exists in these problems.

Roughly we may put the condition:
g > ..¢en /5 .

DELTAS WITH PARTLY CIRCULAR COASTLINE

a) Left hand sgide
There are two cases:

al: b =K,
a2: ‘u?L >k’_ .

stable solution
the circular part of the delta
is partly unstable.

.o we

Case al.
The infinity condition provides: 2iq = ~A Ve L“ ...,)- .- (1)
Point L provides: QW(T. Wl + {,_ l—uwlé -— mea (2)

Wz —A e~ p g U {Eln) vaf] - -~ (3)
Vi, _] (4)
i —-
(5

; \
1‘“*’[/“""/’1.)-‘-‘*%“-“""' )

b+ fP = w2 _ (6

Eliminating 4, a, uy and fI' from these equations we obtain:
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u—)q"

-(-' [ | + I"‘M’Lfl.. .
{5 L-l" - I-WWYL("M?L + "M/‘;J

s 'L"‘(H-'MN G EEge At - m

We find r as a function ofl-fi_ by eliminating VL along &

graphical way from I and IX. The result is shown in figure 9.

Case a2,
In the same way we find
s‘-%’-)q kq_1.+ 0
= b —_——-—- - I
(—u,_) Q;_e[.qj} Kot bnifL, b
tb ety . 2 I1

d - - —— - -
an 9‘1(.”"“"”74) = Yig, ey y U4

from which v. has to be eliminated in order to find r as &
function °ft{> 1’ 'he result is shown in figure 9.

b) Right hand side.

There are three cases:
b1 “"N‘ﬁgs Kq_

b2: |y 7 W -

stable delta
the circular part of the delts is
partly unstable;

we we

b3: l—a.wfpg = 0o ; erosion at the lee side (fig. 7);
the circular part of the delta is
partly unstable,

Case b1,
In the same lway as before we find the two equations

GV £ - E(va)y et (‘*W‘(’oe-“wﬁ)

and 3 + lew gy, I &
1 lop) = i SE e

from which VR has to be eliminated in order to find r as &

function of?n. The resulting curves are shown in figure 9.

Case b2,
We find:
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- 2-
a1k has) = gig LB g n T

If we eliminate VR’ from I and II, we find in this case,

that always r <2w» A, Moreover, we find, that r decreases
with increasing values of ‘ﬁ% « This case, therefore, has
to be rejected.

Case b3,
In a similar way we find here:
7
e P |
— R
v’,'o,VT-f{:— El%w "'nm,(pE. l-wﬁ

215
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Eliminating graphically Vpfrom both equations, we find
r as a function of tan (PE., The result also is shown in figure 9.
The minimum values of r (»r . =2 cosPp ) in this case
b3 are higher than the maximum Balues of r, in the case bl.
Therefore, if we maintain our condition: ‘2 2.¢@ , a
gap will occur between bl and b3. However, if we accept a
certain disorder in the internal distribution of the river
output , we can avoid this gap by calculating in case b3 the
values of » between r = 26'«(& and the meximum values of case
b1.

OUTPUT OF THE RIVER

If we divide the total output of the river: Q, into
two parts, Q. and , we are able to calculate r as & function
of £ from the ¢ 8 of figure 9 by means of the following
formulae: L 2 %, ¢,
A Lw _%. 2,
. - s
case ail: T = T a2 ('H-l-.,'?,),v.& + it l——-»tf,_ .

case 82: %‘:‘,: ';i.. e (1+ I‘"?) fu + ":-“fl- .

4. . < a* (,H-I-»»ya)%f_ + ki bvpe

case bi: (,24; .

case b3: %“ - 'l{ﬁ'z(,“"“"m/")én’ff)

Our figure 10 shows r as a function of £ for some values of
ta.np.

We can use the graphs of the figures 10 and 9 in the
following way.

Supposing, that the values ofZ andf are given, we find
the value of r from figure 10, From figure 9 we find, which
values of ] andify ( respif) belong to this value of r. Also
we can find out from figure 9, whether, at the left hand side,
case al or case a2 occurs and, whether, case b1 or case b3
exists on the right hand gide,

CONCLUSIONS

1., We considered the theoretical shape of a partly circular
river delta with O <hlowA =123 o+ If lna B > 4,23
a straight coastline is unstable already in itself and a
stable solution for the delta shape cannot be found.
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2, With © <l4»1'a-‘_-§la23we found, that a stable delta is possible
only if€54%;, in which %, depends on 3 . To & a distinct
meximum value r, is associated.

3. If$>Z, , and r=> r., the circular part of the delta becomes
partly unstable an& the internal distribution of river
sediment becomes improbable. Erosion on the right hand
coast occurs.

4. If €>4pgthe improbability of the internal sediment distri~
bution comes to an end, but{ the circular part of the delta
remaing partly unstable and the erosion of the coast at the
right hand side of the delta goes on,.

5. Instability along the circular part of the delta (all other
parts are always stable) probably means, that "spits" occur.
The shape of spits has not been dealt with in this paper.

6. Speaking in common language, we deduced that if the quantity
of river sediment exceeds a certain amount, the delta becomes
partly unstable and erosion on the lee side of the delta be-~
gins; the delta grows so large, that it is acting as a partly
circular "groin" with erosion on its lee side and accretion
on the weather side.
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