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ABSTRACT

Waves generated 1n a tank by air blowing over the water surface were
subjected to a horizontal current of water created by horizontal water jets
1ssuing from a manifold at the water surface (hydraulic breakwater). The
energy spectra of the waves were computed for conditions before and afte:
the hydraulic breakwater was turned on. It was found that the shorter,
steeper wave components were attenuated to a much greater extent than
were the longer wave components. Thus, although a large portion of the
wave energy could get past such a breakwater, the waves in the lee of the
breakwater looked considerably lower to the observer.

INTRODUCTION

The literature* on harbor protection contains a number of articles on
an "air breakwater' or a ''pneumatic breakwater.' This type of break-
water consists of a pipe on the ocean bottom, supplied with compressed
air which i1ssues from the pipe through a series of ports. In some manne
this results in a decrease in wave height in the lee of the breakwater. Th
mechanism, or mechanisms, by which the waves are attenuated is in das-
pute, with apparent discrepancies between results of model and prototype
studies. The most likely mechanism 1s the one suggested by Schijf {1940)
and studied theoretically by Taylor {1955). The air bubbles formed when
the air discharges through the ports mix with the water, and as the mix-
ture 1s less dense than the surrounding water, 1t rises. The air bubbles
escape to the atmosphere at the surface while the water turns through
ninety degrees forming horizontal currents. The thickness of the current
was found to be proportional to the one-third power of the volume rate of
flow of air per foot of pipe. The claim that the bubbles themselves some
how attenuate the waves has been shown to be incorrect both theoretically
(Schiff, 1948a, 1948b) and experimentally (Carr, 1950) in studies of the
effect of a bubble-water field one-half a wave length thick.

*See, for example, Green (1961) which contains an extensive ligt of refer
ences on the subject, and a discussion of this paper by Schajf (1961).
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ATTENUATION OF WIND WAVES
BY A HYDRAULIC BREAKWATER

Because 1t seemed that the surface current produced by the pneumatic
breakwater had the main effect on waves, tests were made using a series
of horizontal jets to generate a surface current, this device being called
a hydraulic breakwater (Dilley, 1958; Horikawa, 1958; Snyder, 1959;
Williams, 1960). It was found that a manifold placed at the mean water
level, discharging water jets horizontally into the waves, generated a
surface current similar to the current created by the pneumatic break-
water, and that this current had the same effect on the waves as in the
case of a pneumatic breakwater.

Why should there be a discrepancy between the observations in various
model studies and claims made for the prototype pneumatic breakwater?
Many of these claims stem from early stories of experiments at a pier
at El Segundo, Califormia. However, it was concluded from these studies
that the apparatus was of no utility or benefit and therefore abandoned
(U.S. District Court, 1923), but these conclusions apparently were never
published. Thus, part of the claims are not valid. It 1s believed that the
reasons for the claims are in part real, and in part psychological. Waves
that are still in the generating area are steep, many of them breaking due
to their steepness, and many of them nearly breaking. Because of this,
an opposing current, which will cause the waves to steepen, will force
many of them to break and dissipate wave energy. In addition, waves 1n
the ocean are irregular and for many purposes can be described by an
energy spectrum. On the other hand most laboratory tests are performed
with periodic waves of uniform height. For many purposes the laboratory
waves can be, and have been, associated with the portion of the energy
spectrum 1in the vicinity of the peak energy density which in turn 1s closely
related to the significant wave (Wiegel, 1960). Now, suppose we can gen-
erate a surface current by a pneumatic breakwater, or some other means,
that 1s neither thick enough nor fast enough to stop the longer component
waves in the spectrum associated with the maximum energy density, but
which can stop the shortest wave components and cause those wave com-
ponents somewhat longer than the shortest waves to steepen and break.
Most of the wave power will be transmaitted into the lee of the breakwater,
but 1t will look much smoother than the original wave system as the short
steep wave components will have either been reflected by the current or
greatly attenuated. This 1s the psychological part--the wave system no
longer looks as high as it did before.

If irregular wave systems can be treated to a certain extent as a super-
position of linear wave trains, then a current might be able to affect the
wave components in the selective manner described above. The data ob-
tained by Kurihara (1958) in his field tests suggested to the authors that
this might be possible. In order to test this possibility laboratory ex-
periments were performed using a hydraulic breakwater to generate the
surface current, and blowing wind over the water surface to create the
waves.
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STATISTICAL ANALYSIS OF WIND-GENERATED WAVES

It has been recognized from analyses of wind-wave records that the
ordinate-time history of the water surface may be represented for many
practical purposes as a ''stationary Gaussian process. ' This statistical
model 1n turn implies a distribution of energy over a range of frequencies
which 1s 1independent of time and a distribution of probability over a range
of ordinates (1. e. ordinates of the time-surface elevation record) (Putz,
1954, Pierson, 1954, Bretschneider, 1959).

The most direct method of analyzing any given wind-wave record 1s
to extract from 1t the apparent wave heights and periods--that 1s, to
consider the individual ""bumps'' of the record to be waves themselves.
The problem remains then to show that such''wave heights' and ''wave
periods'' are statistically congruous with the stationary Gaussian process
This has been done by Putz (1954). In regard to the probability distribu-
tion curve containing two parameters gy , the root-mean-square ordin-
ate, and pg, the ratio of the number of zero crossings of the ordinate
to the number of zero crossings of the first derivative of the ordinate
(the number of wave maxima and minima). Zero crossing means the
crossing of the time axis, this axis being through the mean of the ordin-
ates. When po = 1, this distribution function coincides with the Ray-
leigh distribution function. A comparison of this derived probability
distribution with "wave heights' as extracted from a record of 20- minute
length shows that the actual distribution coincides with a theoretical dis-
tribution curve where pgy = .92. Thus, the actual distribution curve 1s
approximately the Rayleigh distribution curve. This result 1s in agree-
ment with the work of several others, namely, Bretschneider (1959),
Longuet-Higgins (1959), and Maiche (1952).

In regard to the energy distribution with respect to frequency, Putz
employed the fact that the Fourier spectrum of the covariance of the
stationary Gaussian process 1s the energy spectrum of the wave record.
Further, the covariance 1s shown to depend on the zero crossings of the
record. Consequently the apparent periods of the waves are related to
the energy spectrum. These results apply to wave records of length no
greater than about twenty minutes, as records of longer duration do not
satisfy the time stationary requirement.

In view of the above 1t may be concluded that the '"wave heights' and
"wave periods'' of the individual "bumps, "' as extracted from the wave
record, are compatible with the stationary Gaussian process and may
therefore serve as indications of the energy distribution with respect to
frequency and of the probabuility distribution of the ordinates.
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EXPERIMENTAL APPARATUS AND PROCEDURE

The experiments were carried out in two different wind-wave tanks.
The larger tank was 106' long by 3' deep by 1' wide, while the smaller
tank was 60' long by 1/28' deep by 1' wide. The larger tank was located
on the U. C. campus and will be referred to as the UCB tank, and all
data taken from it will be noted as UCB data. The smaller tank was
located at the University's Richmond Field Station and will be referred
to as the RFS tank, and the data taken from it noted as the RFS data.

The wind in the RFS tank was generated by a blower, while the wind in
the UCB tank was generated by an exhaust fan. Wind speeds in both tanks
were measured with a pitot tube and a draft gage.

The wind waves were recorded by parallel wire resistance probes
connected to a Brush oscillograph. The flow through the breakwater for
the UCB tank tests was measured by an orifice plate inserted in the
breakwater supply line, and a water manometer. The breakwater flow
rate 1n the RFS tank was measured volumetrically by noting the change
in water level in the tank during a given run together with the run time.
As the run times were short, the increase i1n water levels in the tank was
not sufficient to affect the performance of the breakwater during the run.

The hydraulic breakwater used to generate the horizontal current is
shown in Fig. 1. The designation A = 8 on the drawing 1s to tie it in
with the results of several other scale breakwaters used in model tests
on the scale effect of hydraulic breakwaters (Williams, 1960). A per-
formance curve for the breakwater 1s shown in Fig. 2. It shows the
length of the longest wave that can be attenuated to only 5% of i1ts original
height for a given breakwater discharge. This curve pertains essentially
to nearly deep water waves since the points which define the curve re-
sulted from data where 1. 77 < L/d < 4.92. Figures 3 and 4 show the
arrangement of the resistance probes, breakwater, pitot tube, etc., for
the UCB and RFS tanks, respectively. The experimental procedure was
similar in both tanks, except for measuring the breakwater discharge.
First, the waves were recorded for a given wind speed without the break-
water in the tank; next, the waves were recorded after the breakwater
was installed but before 1t was turned on, and, finally, the waves were
recorded for several breakwater discharges while holding the wind speed
constant. This procedure was repeated in the UCB tank for two water
depths, 6 inches and 27 inches, using one wind speed at each depth, and
in the RFS tank using one depth, 6 inches, and two wind speeds. In the
UCB experiments only two resistance gages were used, one 1in front of and
one behind the breakwater. In the RFS experiments three gages were
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used, two behind and one in front of the breakwater. The exact positions
of these gages with respect to the breakwater are shown i1n Figs. 3 and 4.

ANALYSIS OF DATA

Two problems presented themselves: first, the method of taking the
sample and second, the size of the sample. In view of the excessive
amount of work required in extracting the "'wave heights' and ''wave per:
ods'" from a wave record, an attempt was made to determine the minimu
length of record that would give a realistic account of the physical situat:
involved. A record from the UCB tank was analyzed using samples of
100 consecutive waves and 50 consecutives waves, and the cumulative dis
tribution curves were plotted of the "heights! and the 'periods" (see Fig-
ures 5a and 5b). Since there was no appreciable difference 1n these two
curves, it was decided that about 50 waves could be selected as an ade-
quate sample size.

There are several methods available for picking the "wave heights' ar
"wave periods' from the record. Two of these methods are the zero-up-
crossing method and the crest-to-trough or trough-to-crest method. In
the zero-upcrossing method the periods are taken as the distance betwee:
the successive upcrossings of the wave record, f(t), with the axis througl
the mean of the ordinates. This quantity is denoted as T. The wave
height, H, corresponding to a given T is taken as the vertical distance
from the crest to the trough found on the interval T. The crest-to-troug]
method defines the '"period" as the distance between successive dominant
crests. This period 1s indicated by T. The height is taken as the vertic.
distance from the first crest of T to that point which is lowest between th
two crests. The trough-to-crest method defines T as the distance betwe:
successive troughs, and the height, H, as the distance between the first
trough and the highest point on the record between the two troughs. Fro:
these definitions it is clear that 7f_>_ T where the bars indicate averages
of a number (N) of waves. The equality sign holds 1n the limit as N+ © ,
provided there are only a finite number of small ripples which intersect
the time axis in the unlimited record. These ripples are considered as
"waves' in the zero-upcrossing method, but are neglected in the crest-
to-trough method (see Pierson, 1954).

To illustrate the differences between these two methods a section of
wave record was analyzed both ways, and the resulting cumulative dis-
tribution curves plotted in Figs. 5a and 5b. Figure 5a illustrates the
difference between the two methods for a 100 wave-period sample, and
the difference between a 50 wave-period sample and a 100 wave-period
sample for the zero-upcrossing method. Figure 5b shows the difference
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between a 50 wave-height sample and a 100 wave-height sample for the
zero-upcrossing method. It is to be noted that the wave heights taken
from the record by both of these methods will be identical provided there
are no small ripples intersecting the time axis between two larger waves.
In view of this fact and the results indicated in Fig. 5a, it was decided
that the selection of the method could be based solely on its utility for
the purpose at hand, and subsequently the zero-upcrossing method for
the sample size of 50 plus waves was chosen. In these and subsequent
figures the term "maximum wind speed" refers to maximum speed ob-
tained from a velocity traverse from near the water surface to the top

of the tank (see Fig. 6).

It should be emphasized that the sample size of 50, plus, waves per-
tained only to the wave record obtained without the breakwater in the
tank. These 50 plus waves represented a time interval on the wave rec-
ord of 25 to 35 seconds. It was this time interval that was kept constant
throughout a set of breakwater discharges at a given wind speed, and
consequently determined the sample sizes for each breakwater discharge.
This was done so that the total energies of the wave spectrum could be
compared realistically with one another before and during breakwater
operation. Also, an effort was made to select as closely as possible the
same set of "'waves'' at each gage location for a given run. An example
of the records before and after the hydraulic breakwater was turned on
is given in Fag. 7.

After the wave heights and periods were measured on records from
the several wave gages for a given breakwater discharge and wind speed,
the following quantities were calculated: H, T, o7 .1?2 , H/T’°Z,

Hj/3 and H1/3/ﬁ. Here the bars denote arithmetic averages, 0 { and
0% are the usual standard deviations of H and T respectively, H/Tz

is taken as being representative of the wave steepness, and H? 15 repre-
sentative of the wave energy per unit surface area. These quantities
were calculated for the conditions of no breakwater in the tank, break-
water in tank with zero discharge, and at least two discharges. For the
RFS tank two such sets of quantities were calculated, one for each wind
speed used. These results are presented in Table 1. Similarly two sets
of such quantities were calculated from the UCB tank records, one for
each water depth used. These results are presented in Table 2.

Finally, joint frequency plots for H% and T, and frequency histograms

for H/ T2 were plotted. These data appear in Figs. 8 through 11 for the
RFS tests and in Figs. 12 through 15 for the UCB tests.
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TABLE 1. SUMMARY OF RESULTS, RFS DATA

Maximum wind speei= 29,5 ft/sec, water depth 0.5 ft.

No breakwater in tinnel

Gage Number

No. of Waves H, ft. ‘F, sec. e’f{, ft. GDT, sec, ﬁz,ftz H/?2 Hy/3.ft. Hy/3/H
2 54 .081 .475 .0271 .0621 .0072 ,358 .111 1.37
3 54 .079 472 .0228 .0615 .0068 .361 .106 1.34
4

54 .081  ,465 .0282 .0638 .0073 ,387 .110 1.36

Breakwater in tmmmel, no discharge

2 55 .091 .480 .0253 .0719 .0090 ,408 .119 1.31

3 55 .079 .480 .0257 .0748 .0069 .352 .109 1.38

4 55 .083 478 .0230 .0731 .0075 ,381 .108 1.30
Breakwater in tumnel, Q = .00775 cfs., C, = 815%

2 52 077 011 .0228 .0651 .0065 ,305 .102 1.33

3 53 .059 .492 .0221 .0737 .0039 .253 .083 1.41

4 55 .092 471 .0345 .0782 .0097 417 .129 1.40
Breakwater in tunnel, Q = .0104 cfs. Cc = .700

2 52 .064 .516 .0260 .0832 .0047 ,244 .001 1.42

3 50 .057 .535 .0242 .0764 .0039 .205 .084 1.47

4 53 111 .500 .0393 .0605 .0139 ,437 .151 1.36

Maximum wind speed = 41.4 ft/sec., water depth = 0,5 ft.

No breakwater in tunnel

2 55 129  .636 .0323 .0983 .0178 ,335 ,163 1.26
3 56 134 .622 .0329 112 .0190 .372 .167 1.24
4 56 .138  ,627 .0396 122 .0200 .369 .178 1.29

Maximum wind speed = 41.4 ft/sec., water depth = 0.5 ft,

Breakwater in tunnel , no discharge

2 55 129 .635 .0300 .132 .0178 .347 .159 1.23
3 55 137 .624 .0288 .128 .0197 ,383 .169 1.23
4 55 .127  .630 .0291 .113 .0170 ,343 ,159 1.24

Breakwater in tunnel, Q = ,0155 cfs., C¢ = .640

2 53 Jd12 662 .0309 .104 .0134 .260 ,144 1.30
3 51 116  .677 .0329 .0908 .0152 .277 .156 1.34
4 53 .188 654 .0427 .0868 .0371 ,455 ,232 1.23

Breakwater in timmel, Q = ,0190 c¢fs,, C¢ = .625

2 52 095 .671 .0316 .136 .0101 .223 .129 1.36
3 49 112,699 .0355 .123 .0128 .230 .149 1.33
4 54 .168  .645 .0536 .106 .0300 .423 ,226 1.35

*C, is the discharge coefficient of the orifice as determined experimentally .
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TABLE 2. SUMMARY OF RESULTS, UCB DATA

Maximum wind apeed = 21.3 ft/sec, water depth = 0,5 ft,

No breakwater in tunnel

Gage Number _ —_ R _
No. of WavesH, it. T, aec. &y, ft. 6%, sec.HZ ft2 H/T2 Hy/3.ft. Hy/3/H

2 54 .064 .478 .0203 .0394 .0044 .287 ,0861 1.35
3 54 .065 .475 .0185 .0336 .0045 .289 ,0823 1.27

Breakwater in tunnel, no diacharge

2 53 .0614 .481 .0203 .0471 .0042 ,273 .0844 1.37
3 53 .062  .477 .0193 .0405 .0042 .277 .0835 1.35

Breakwater in tunnel, Q = .0059 c¢fa, C. = ,970

2 53 .0607 ,494 .0178 .0565 .0040 .251 ,0793 1.31
3 53 .0800 .494 .0255 .0519 .0071 .,338 .110 1.38

Breakwater in tunnel, Q = .0071 c¢fs, C. = .860

2 52 .043 510 L0157 .0466 .0021 .164 .0611 1.42
3 53 .086 .500 .0245 .0537 .0080 .,351 .111 1.29

Breakwater in tunnel, Q = ,0079 cfa, C; = .805

2 49 .034 544 .0122 .0502 .0014 .118 .0474 1.39
3 53 .094 ,500 .0341 .0590 .0098 ,390 .133 1.41

Breakwater in tunnel, Q = .0089 cfg, C¢ = .757

2 48 .019 550 .0081 .0788 .00041 .0645 .0271 1.43
3 53 .098 500 .0276 .0602 .0104 ,402 .127 1.30

Maximum wind speed = 31.9 ft/sec, water depth = 2,25 ft,

No breakwater in tunnel*

2 52 .170 532 .0395 .0758 .0305 .622 .212 1.25
3 54 .164 506 .0387 .0810 .0283 .641 .200 1.22

Maximum wind speed = 31,9 ft/sec, water depth = 2,25 ft.
Breakwater in tunnel, no digcharge

2 55 .131  .486 .0360 .0647 .0186 .559 .171 1.31
3 55 .110  .489 .0323 .0582 .0132 .465 .144 1.31

Breakwater in tunnel, Q = .0102 cfg, C, = .713

2 50 .095 ,535 .0323 .0554 .0100 .330 .131 1.38
3 54 .123  .489 .0369 .0763 .0167 .520 .159 1.29

Breakwater in tunnel, Q = ,0120 cfa, C, = .666

2 51 .071  .530 .0285 .1120 .00590 .264 ,104 1.46
3 51 .122  .536 .0456 .0808 .0170 .434 .173 1.42

*Note The reaults recorded for the condition "no breakwater in tunnel" were
reduced from data which was not taken at the same time aa the rest of
the data for the above wind apeed and water depth.
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ATTENUATION OF WIND WAVES
BY A HYDRAULIC BREAKWATER
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Several of the records were analyzed to obtain power spectra, using
the IBM 7090 computer at the Computer Center, University of California,
Berkeley, Calif., using the share sub-routine #574 ''CS TUKS'".

The results are shown in Fig. 16.

EXPERIMENTAL RESULTS AND CONCLUSIONS

The joint distribution plots of HZ and "\I" reveal two facts: (1) the high-
est waves occur at a period approximately equal to the average period,
T, both behind and ahead of the breakwater, and (2) the average period
?1‘7 increases consistently with increasing breakwater discharge for waves
in the lee of the breakwater. Since the sample time interval for a given
set of runs was constant, fact number two implies that the shorter period
waves were eliminated from the given portion of the record. From fact
number one 1t 18 clear that the steepest waves are those which in general
have periods such that

~ ~

TL T
hence it 1s concluded that the steepest wave components are filtered out
of the spectrum by the current and those longer than the average pass
through the current. The frequency distribution plots of percent occur-
rence of I—I/“’,["2 also leads to this conclusion. That 18, the range of H/"i"'z
narrows and H/"i"2 decreases behind the breakwater for increasing break-
water discharge. In viewing these data it should be kept in mind that the
wind was still blowing over the water surface so that some new relatively
high frequency waves were formed in the lee of the breakwater by this
wind. In front of the breakwater just the opposite occurs, the range
widens and the average value increases for an increasing breakwater dis-
charge. This filtering action was recently verified in experiments car-
ried out for a two-frequency system of waves that were combined linearly
with the higher frequency component (twice the frequency of the lower
frequency component) completely filtered out and the lower frequency
component getting through undistorted (Williams, 1961). However, this
test was a simplification of the actual case, as the steep wind waves have
higher harmonics which, in a spectral analysis, would show up as high
frequency components as the spectral analyses presumes linear super-
position. Thus, some of the higher frequency components shown in Fig.
16 are 1n reality higher harmonics of lower frequency components.

The fact that a surface current will filter out the shortest (which are th
steepest in a wind-wave system, being at a limit of stability) waves while
permitting the longer waves to pass may well explain the discrepancy in
the reported success of breakwaters utilizing the action of such a current.
That 1s, if the reported degree of effectiveness of the breakwater was
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based on visual observation (as it was 1n several instancesa, see Laurie,
1955) then the observer would likely be misled by the filtering action of
the current, since long waves are not as easily detected by visual obser-
vation as the shorter and steeper waves. Hence, 1n spite of the apparent
attenuation of the sea surface, considerable energy may still be trans-
miatted by the longer waves, and it is this energy which may be damped
out only at the expense of a disproportionate increase in the energy input
to the breakwater. Thus, the difference between the power requirements
as based on controlled laboratory experiments and .hose as observed in
prototype action in the fields, as well as the disagreement between the
different prototype operations themselves, may be due to 1nadequate field
measurements. It 1s interesting to note that in the two prototype tests in-
volving the visual observation (Laurie, 1955; Kurihara, 1958) the efficien:
of the breakwater was reported as higher than predicted or observed else-
where (Evans, 1955a, b). In one of the cases (Evans, 1952(b); Laurie,
1955) later measurements using a wave recorder rather than visual obser
vations indicated little effect due to a pneumatic breakwater.

A reason which maght account for an actual increase in effectiveness
of the prototype breakwater has been suggested by R. C. H. Russell
{personal communication, 1962). Because actual spectra of wind waves
are two dimensional, some component waves are advancing at angles to
the direction of mean wave advance, so that the component wave speed
heading into the current is lower for these component waves which would
permit a lower current to attenuate them. It is difficult to access this
effect as the current would tend to cause the wave components to refract
at the same time.
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