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ABSTRACT 

Analytical procedures are presented for calculation of the 
dynamic displacements of fixed offshore structures in oscillatory 
waves.    The structure considered has four legs in a square configu- 
ration with waves impinging normal to one side;   however, the proce- 
dures are general and may be applied to other configurations and wave 
directions. 

The horizontal displacement of the deck is determined as a func- 
tion of time by application of vibration theory for a damped,  spring-mass 
system subject to a harmonic force.    The instantaneous wave force on 
each leg is composed of a hydrodynamic drag component and an inertial 
component as in the usual "statical" wave force analysis.    The wave forct 
expression is approximated by a Fourier series which permits calculatioi 
of the platform displacement by superposition of solutions of the equation 
of motion for the platform. 

Depending on the ratio of the   wave frequency to the natural fre- 
quency of the platform, the structural stresses may be considerably high* 
than those found by methods which neglect the elastic behavior of the stru 
ture. 

The highest wave to be expected in a given locality is not neces- 
sarily the critical design wave.    Maximum displacements and structural 
stresses may occur for smaller waves having periods producing a reso- 
nant response of the platform. 

Displacement measurements in a wave tank using a platform con- 
structed of plastic are presented to show the validity of the analytical mel 
od.    Both small and finite amplitude waves are used over a wide range of 
frequency ratios.    A digital computer program (7090 FORTRAN) is used 
for the displacement calculation. 
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INTRODUCTION 

The usual method of design of a fixed offshore structure (i. e. , 
a deck located above the limit of wave motion and supported by three or 
more legs driven into the ocean bottom) is by means of a "statical" wave 
force analysis.    In this approach the procedure has generally been to 
select a "design wave" which is the largest wave to be expected in the 
locality.    Using applicable wave theory (for particle velocities and accel- 
erations) and appropriate wave force coefficients, the maximum forces 
and moments are computed assuming the structure is in static equilibrium. 

Recent field experience, including the tragic failure of a major 
structure off the East coast (U. S. Senate,   1961) have indicated that the 
maximum or "design wave" may not be the wave which causes the greatest 
stresses in the structure.    In other words, a smaller wave whose funda- 
mental period approaches the natural period of vibration of the structure 
may be critical for design in view of the large amplification of deflections 
and stresses near resonance. 

A method of analysis which considers the elastic nature of the 
structure and its dynamic response to wave forces is presented for use in 
the design of future offshore platforms. 

ANALYTICAL DEVELOPMENT 

DYNAMIC ANALYSIS OF PLATFORM 

Equation of Motion 

Analytical procedures are developed for the dynamic analysis of 
an offshore platform supported by four cylindrical legs and acted upon by 
a train of oscillatory surface waves.    The horizontal displacement of the 
platform is represented by X measured with respect to the neutral position 
of the center of gravity of the deck as shown in Fig.   1.    The equation of 
motion for a single degree of freedom,  equivalent spring-mass system, 
with linear damping and restoring force subjected to a sinusoidal exciting 
force as shown in Fig.   2 is given by eq.  (1), 

m 
2 

fL*   + c^- + KX = P(t») = P     sin of (1) 
dt' dt m 

where: 
m = effective mass of system 
C   = damping coefficient of structure 
K  = spring constant of structure 
Pm =amplitude of harmonic exciting force    ^ 
o* = frequency of harmonic exciting force = -rap 

t1  = time in the equivalent system 
The solution of equation (1) (Housner and Hudson) is, 

P 
X(t') = —   •  sin (af -*)    (2) 

2    1        '  r.n 2— 
K 

        —„ ,  

[i-L3   1    +[2 §4-1 "_ r    n C   n 
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where, 

X(t') = horizontal displacement due to P(t') 

<T        = v--^-, undamped natural frequency of (3) 
spring-mass system 

C        = 2N/mK, critical damping coefficient (4) 
c , C       «r 

,   zc~   w 
4 =tan"1[ ^—^ <5> 

n 

The crux of the proposed method of analysis may be seen by comparing 
Figs.   1 and 2.    The equation of motion (1) is considered to apply to the 
equivalent spring-mass system shown in Fig.  2.    The effective mass of 
the equivalent system is concentrated at the deck and the legs are con- 
sidered to act as cantilever springs of zero mass. 

The harmonic exciting force P(t') acts in the plane of the deck 
which undergoes a pure translatory motion since it is assumed to have 
a stiffness which is large compared to the legs and is therefore not sub- 
ject to deflection due to bending.    The actual exciting force for the plat- 
form is F(t) which is the resultant of_the time dependent wave force dis- 
tribution acting at variable distance s above the bottom,    (Fig.   1)     The 
problems involved in relating the actual platform motion to the vibration 
of the equivalent spring-mass system (Fig.  2) are described in the fol- 
lowing section. 

Platform Characteristics 

1.    The actual exciting force F(t) must be related to the exciting 
force P(t') in the equivalent system.    Since F(t) is composed of both hydr< 
dynamic drag and inertial contributions, it cannot be represented by a 
single term of the form F sin ot.    However, by means of a Fourier serie 
approximation, F(t) can be represented by a series  of sine terms to any 
desired degree of accuracy.    Each F term in the series can be related to 
a P term through the method of influence fractions.   Since the equation of 
motion (1) is linear,  the component displacements due to the individual ex 
citing force terms (P     sin ot') in the Fourier series can be summed to d« 
termine the total platform displacement as a function of time.    Hence, 

m 

Xtoti^XXmW <6> 
m =0 

The usual procedures of structural analysis may then be used to relate dii 
placements (strains) to stresses. 

The static deflection of the platform is obtained from cantilever 
beam theory.    The equation for the maximum deflection of the deck (X 
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P(t') 
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Fig. 2   Equivalent 
Fig. I   Unbraced   Platform Spring- Mass 

Four Cylindrical Legs System 

0=0*        0=180°    0=360° 

SWL 

y/As^/x^V/A\V/A^/A\\y/A\V//\\K 
Fig. 3    Definition Sketch  for Wave  Motion 
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for a force F applied at an elevation "§ (see Fig.   1) is 

^maJact.    = HSlU " 1/ (7) 

In the equivalent system, with a force P applied at the elevation of the 
deck (see Fig.  2),  the deflection is found from eq.  (7) by letting 
s =H, hence, 

[Xmax3equiv.   = T2HET (8) 

In the above equations, 

E = elastic modulus of actual platform leg 
I   = moment of inertia of actual platform leg 
N = number of legs = 4 
J? = vertical length of legs 

The influence fraction which relates F and P is determined fron 
the requirement that the static deflection of the equivalent system under i 
force P must equal the static deflection of the actual platform under a 
force F.    Hence, by equating eqs.  (7) and (8) the ratio, P/F = f, becomes 

P S2        H3 

£ = f = 3(|)    - 2(|) (9) 

2. The spring constant of the equivalent system is by definition 

K =|X
P      i (10) 

1    max.' equiv. 

Therefore from eq.  ( 8 ), with N = 4, 

K»iSL£L (ii) 

3. The natural frequency of the equivalent system is equal to th 
natural frequency of the actual platform.    Rayleigh's Energy Method (Tho 
son,   1953) can be applied to determine the natural frequency of the equiv, 
lent system using the static deflection curve to calculate kinetic and potei 
tial energies.    In the equivalent system the deflection X(z) of the legs at 
any section z in terms of X can be found from simple beam theory tc in 3.x. 

VI    \ 2 3 

JT1  = 3<£> - 2<l> {12) 
max. " •* 

The maximum kinetic energy is given by, 
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[K.E.] .W    \f•*tN   A    'f•    dg L Jmax.      g Z ^ g 2 
o 

Substituting for X(z) from eq.  (12), 

v 

tK-E'l max.   =     n 2gmaX-   <W +^ Nw*> <i3> 

where, 

W = weight of deck 
w = weight per foot of leg 

The maximum potential energy is given by, 

KX2 

Upon equating the kinetic and potential energy eq.  (13) and (14), the 
natural frequency is, 

°n = /i-(W+4^NWJ0 
(15) 

4.    By comparing eqs.  (3) and (15), the effective mass of the 
equivalent system is, 

J_ „„ .   13, 
g 

m =_L(w + .^NwJ!) (16) 

In a simple vibrating spring-mass system, the effect of the 
mass of the spring can be accounted for by increasing the rigid mass 
by one-third of the mass of the spring.    The factor 13/35 obtained above 
is close to this  value and represents the proportion of the mass of the 
legs to be added to the weight of the deck in the actual structure.    If 
the legs had been considered to be pinned to the deck the fraction would 
be 33/140.    The added mass due to vibration in water has been found to 
be negligible compared to the mass   of the platform.    The effect of 
bracing between legs can be accounted for by modifications in the above 
procedures. (Nolan and Honsinger,   1962). 

5.    The critical damping coefficient, C   , is a function of m and 

K and can be calculated from eq.  (4). 
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6.    The damping coefficient,  C,   of the equivalent system is 
equal to the damping coefficient of the actual platform.    A convenient 
way to determine the magnitude of the structural damping coefficient 
is to measure the decay of the amplitude of oscillation under the ac- 
tion of a single impulsive force (Thomson,   1953) either in the actual 
structure or in a model.    Thus,  if X, and X, are two successive posi- 

tive displacement amplitudes,  the ratio of C/C    is proportional to the 
logarithmic decrement 

c 2 

The magnitude of viscous damping due to vibration in water has 
been found to be small compared to the structural damping. 

7. The frequency of the harmonic exciting force is equal to the 
wave frequency 

2TT 
a = -=- 

where T is the period of the wave motion. 

8. The phase angle $ can be calculated from eq.   (5) since it 
is a function of C,  C   ,  a,  and o  . c n 

The above series of equations provide the necessary information 
for the determination of all of the coefficients in the equation of motion of 
the equivalent system (eq.   1) in terms of known quantities for the actual 
platform. 

Wave Force Theory 

The wave force on a single vertical cylinder follows the method 
of Harleman and Shapiro (1955) which is a modification of the developmenl 
by Morison, et al (1953). The method has been shown to be well adapted 
to finite amplitude waves as used in the laboratory experiments. Howeve- 

the dynamic platform analysis is essentially independent of the particular 
wave force theory and any procedure which can be approximated by a Fou 
rier series can be employed. 

The following functions are used for the total wave  force F on a 
single vertical cylinder,  following the notation shown in Fig.   3: 

2 
F = F     sin    0 + FT cos 0 c I 

F = FT sin2 0   + Fj cos 0 

0°   < 0 < 180° (18) 

180° < 0 < 360° (19) 
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where, 

F     = hydrodynamic drag force at crest ( 6 = 90°) 

FT = hydrodynamic drag force at trough (8 = 270°) 

F,   = inertial force at 6 = 0° and 180° 

0     = phase angle = ( at - kx) 

k     = wave number = 2-ir/L 
L    = wave length 

1.    The hydrodynamic drag forces F    and F   are expressed 
in terms of a drag coefficient C-.: 

h + ri 

r u2 2 
Fc =   / CD PTT Dds' = CD ^^ • A (2°) 

o 

h + T,  -H 
c      7 

FT = | CD p~z~ Dds' =CD :j^r-,B (21) 

where, 

u = particle velocity under the wave crest 

u = particle velocity under the wave trough 

p = density of water 
•y = specific weight of water 
C-p. = drag coefficient for cylinder 

s' = instantaneous elevation of particle 
D = cylinder diameter 
tj = wave amplitude at crest 

h = depth to s.w. 1. 

and 1 +  ^c/h 

Ax*    d(s'/h) (22) 

B    =   I TIT- d(s'/h) (23) 
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The equations for u    and uT used to evaluate the A and B integrals 

are those of the Stokes third approximation for large amplitude waves in 
water of finite depth.    The wave equations and numerical tables of the 
wave properties are available (Skjelbreia,   1959) and will not be repro- 
duced here.    The integrals can be evaluated graphically or,  as was done 
in this study, programmed for a digital computer. *    The drag coeffici- 
ents in the crest and trough region are determined from a standard 
steady state plot of C_ versus Reynolds number.    The Reynolds numbers 
are defined as follows: 

J ucD D 
Rc        "IT-     = V  sJZSr~ {24) 

and 

°'T ~ v 
RT=£_ ^/gEB- (25) 

The line of action of the hydrodynamic drag force passes through the cen- 
troid of the curve of u   versus s1.    For the crest, the distance from the 
bottom to the line of action of F    is designated by s   , hence, by taking 
the first moment, 

sc (26) 

In a similar   manner, for the trough, 

1  +    X 

ST 1 
"E"~  =¥ 

/UT       s' d(s'/h) (27) 

Harleman and Shapiro (1955) have shown that s    can be assumed constant 

for 0"<e<180*, and 7•   can be assumed constant for 180<,<e<360,\ 

2.    The inertial force due to particle accelerations is evaluated 
from the Newtonian equation of motion for an object in an accelerating 
flow field, 

*   For the waves used in the experimental study, relatively little error is 
introduced if the Airy equations for particle velocity are used. 
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h 

F
T  = C„PT-  / a^ ds (28> 

where, 

I       ^M^^~   /      x o 

C.., = added mass coefficient 
M 

a      = horizontal acceleration at 6 = 0° x o 

The acceleration integral may be evaluated from the Stokes 
third order tables (Skjelbreia,   1959).    For the range of waves   in the 
experimental study it is sufficient to use the Airy equations with 
C      = 2„ 0 and eq.   (28) then becomes, 

2 
Fj =^D H    tanhkh (29) 

The line of action of the inertial force is, 

I    _    1 + kh sinh kh - cosh kh .     . 
TT kh sinh kh K•] 

which is assumed constant for all values of 0. 

It should be emphasized that this paper is not primarily con- 
cerned with the particular wave force computational procedure for a 
single vertical  cylinder or with the various arguments m regard to the 
numerical values for C^ and C.,.    The values chosen agree with the 

laboratory experiments.    Under field conditions other values m accord- 
ance with the experience of the designer may be used. 

The wave force functions,   eqs.  (18) and (19),  may now be ap- 
proximated by a Fourier series in the following manner: 

let F,  the resultant wave force on one of the vertical legs,  be 
given by, 

F = a o + >    (a    cosnG+b   sin n6) = F    sin29 + FT  cos 6 (0°<5<i80 
>    l_j      n n ' c I v  

n=i ? 

= -FT sin 0 + Fj cos 0 (18O°<0<3 

where, 2ir . 

•o 

n      TT   I 

a    = •*-   I    Fd6 o      2ir J 
° •> 

F (cos nfi) d6 

o 
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n        * J F (sin n0) d0 

Whence, 

F  -F„ a    =    c     T o    -^  

»l =F
T b,   =4 (F   +F-,) 

2 

F  -F 
a. = - (   c.   T) b,  = 0 

a3=0 b3 = - -^ (Fc + FT) 

Therefore, 
Fc"FT 4 F   =—S, i-+FTcos   0 + JL(F  4-F^)   sin 6 4 I 3ir      c      T* 

Fc"FT, ..    ,rt       4 (   "4    A) cos 26 --^(Fc+FT) sin 36 + -—     (32) 

The last two terms tend to cancel and contribute little to the total force, 
hence only the initial three terms of the series are used,  in addition, 
since cos 0 = sin (0+90°): 

F  -F 
F =    °4    T +Fj sin(0 + 90') +^-  (Fc+FT) sin 6        (33) 

This series of sine terms is valid for OC<0<36O°. 

Before using the series expression for wave force,   eq.   (33),  in 
the dynamic analysis of the platform it is of interest to see how it compa 
with experimental measurements on a single vertical cylinder.    The com 
parison with earlier experimental measurements (Harleman and Shapiro, 
1955) is shown in Fig.  4.    The agreement,  considering that only three te 
are used in the Fourier series,  is considered reasonable.    In addition, b 
C_, s 1.2 and C., = 2. 0 were chosen "a priori",  and a better fit could be 

y M 
tained,  if desired, by adjusting these coefficients. 

Platform Displacement 

From eq.  (9) the following influence fractions may be defined, 

P 7   2 "S3 
fc = 1^  =3(y)   - 2(T) (34a) 
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P~ sT 2 s_ 3 
f_ =J- =3(-i)     - 2(-i) (34b) IT _T: 

PT sT  2 sT   3 
fi  =^=  3<f>   -2<T) (34c) 

where eqs.  (26,  27, 30) are to be used to calculate the appropriate values 
oie/l. 

The Fourier series for the forcing function P at the elevation of 
the deck in the equivalent system is obtained from the wave force equation 
(33), hence, 

F f -F_f_       A 
p =_c_J_JLl+1l(Fcfc + FTfT) sine+ Fjfj sin (e + 90')     (35) 

To simplify the notation, let, 

F f   - F f _ cc       TT 
Pl   = 3  

P2  =3¥<Fcfc+FTfT> 

P3  = FIfI 

Therefore,   since 6 - ( a\ - kx),  eq.  (35) becomes, 

P = P1+P2sina(t-^)+P3 sina(t-^ + H) (36) 

or 
P  = Pj + P2 sin at' + P3 sin at" (37) 

where t'  = t  a 

J *u *     kx A. 90° and t"       = t + -— a <x 

Each of the P terms in eq.  (37) gives rise to a displacement X 
given by eq.  (2).    The P. term is independent of both x and t, hence, 

4P 
Xt  =-1?-L (38) 
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The factor 4 appears in eq.   (38) since the P terms represent 
the force on the equivalent system due to the wave force on a single leg 
of the structure.    As shown in Fig.   1,   x = 0 is taken to coincide with 
the two forward legs of the platform.    To simplify the notation,  let the 
denominator   of eq.  (2) be given by, 

G  = Jil-iJLfi'+lzg-S-]' (38) 
n en 

For the forward legs, x = 0, 

t"       =     t+      ^ 
0 

,     kx      2irb 
s' x = b'   0   =   0L  = 

360"b 
0L 

t'  -t     360°b 
1    ~ X       0L 

_        360°b      90° 
Z        l       0L            0 

Therefore,  from eq.   (2),  the sum of the instantaneous displacements for 
the two forward and two rear legs due to the forcing term P2 in eq.   (37) 
is given by, 

X2(t)   =1R^-[Bin(ot-*) + 8in(at-^^-*)] (39) 

In a similar fashion,  the instantaneous displacement due to the 
forcing term P,, becomes 

2P 
X3(t)   = ^^l [ sin (0t + 90° - 4) + sin {at - 36^°b + 90° - ft 

(40) 

In accordance with eq.   (6) the total displacement of the platform 
deck at any instant of time is given by, 

Xtot.(t)   =Xi+x
2(t) +X3<t) (41> 
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EXPERIMENTAL RESULTS 

The experimental measurements were made in the 90-foot wave 
channel in the M.I. T. Hydrodynamics Laboratory.    Waves were generated 
by a variable speed and amplitude piston type generator located at one end 
of the channel.    Wave reflections from the beach at the far end of the chan- 
nel were avoided by starting each run from rest and recording the data 
during the passage of the eighth wave. 

The platform was located 40 feet from the wave generator and was 
constructed of plastic.    The four legs are 1/2 inch diameter,  42 inches Ion 
and are located on 16-inch centers in a square pattern.    The platform deck 
is 5/8" x 18" x 18" and contained a bolt in the center for observing platform 
displacements and for holding weights to change the natural frequency of th 
structure.    The legs were rigidly fixed to the bottom of the wave tank.    Th« 
platform displacements were recorded by means of a 16 mm movie camera 
A two channel oscillograph was used to record wave profiles by means of 
parallel wire resistance wave gages.    The two gages were adjusted until th 
two wave profiles were in phase on the recorder paper at which point the 
measured distance between the gages is equal to the wave length.    The wav 
period was determined by comparing the measured wave length on the re- 
corder paper with the known speed of the paper.    The wave characteristics 
for the tests reported are given in table I. 

TABLE] 

Wi ave Characteristics 

Wave H 
(ft) 

L 
(ft) 

h 
(ft) 

h/L H/L C=2TT/T 
(1/sec) 

B 0.31 10.86 2.25 0.21 0.029 4.00 
D 0. 40 7. 33 2.25 0. 31 0.055 5. 13 

The parameters used in the wave force theory are given in table I] 

T ABLE II 

Wave Force Parameters 

Wave        A 

(22)* 

B 

(23)* 

CD c 
CD„, T 

F            "i" c            c 
(20)*    (26)* 
(lb)       (ft) 

FT 
(21)* 
(lb) 

ST 
(27)* 
(ft) 

FI 
(29)* 
(lb) 

B         0.0042 0.0028 0.92 0.88 0.027     1.54 0.017 1.26 0.023 

D         0.0067 0.0034 0.96 0.92 0.042     1.81 0.022 1.41 0.033 

The spring constant of the platform was determined to be K =7.5 
The natural frequency of the platform was varied by adding weights to the d 
The damping ratio    C/C   was determined experimentally by a measuremen 

the logarithmic decrement as given in eq.  (17).    The platform characterist 
are summarized in table III. 
* equation number 
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TABLE in 

Platfor m Characteristics 

Added wt. o n c/cc 
(lb) (1/sec) 

0 6.01 0.050 
3 4.67 0. 055 

6 4.00 0.061 

The experimental runs are designated by a letter indicating the 
wave characteristics and a number indicating the amount of added weight. 
Thus,  run D3 used wave D and 3 pounds were added to the deck of the plal 
form. 

The experimental results for six runs are shown in Figs. 5, 6, and 
in which the horizontal platform displacement is plotted as a function of 
wave phase angle. The theoretical displacement as calculated from eq. ( 
is also shown for comparison. The runs were chosen to illustrate the ag] 
ment between theory and experiment for ratios of wave frequency to natur 
frequency (a/a ) ranging from 0. 66 to i. 28. In general, the agreement it 
good, considering that all wave force parameters were determined analyt 
cally. The most serious disagreement occurs, as would be expected, for 
run D3 (a/a = 1. 10) which corresponds to the damped resonant condition 
maximum displacement. 

A digital computer program (Fortran) was developed for the theoret 
displacement calculations. The calculations were done at the M.I. T. Cor 
putation Center on an I. B. M.   7090 computer. 

CONCLUSIONS 

The analytical procedure using the equivalent spring-mass system f 
the dynamic analysis of offshore structures has been verified by laboratoi 
tests. The magnitude of the dynamic displacement of the platform deck rr 
be of interest in itself. More generally, the dynamic displacement is use 
in the stress analysis of the entire structure. The usual practice has bee 
to design statically on the basis of the largest wave to be encountered. It 
may well be true that for the "design" wave the statical analysis is correc 
since, in general, the period of the highest wave may be large compared 1 
the natural period of vibration of the platform. However, smaller waves 
lesser period may approach resonance with the platform. It is not difficu 
to foresee cases in which stresses under near resonant conditions could e 
ceed the stresses of the statical design wave. For example, the steepnes 
of wave D is almost twice as high as wave B; however, the displacement 
(hence,  the stresses) for wave B at a/a    = i. 00 is twice as high as for wa 

D at a/a    = 1. 28.   Another comparison may be made on the basis of the r< 

of displacements calculated both statically and dynamically. For test B6, 
the measured dynamic displacement is six times the calculated static dis- 
placement.    Consequently,   stresses will be greater by the same ratio. 
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Field tests on Texas Tower No.   4 (Ref.   8) off the eastern coast 
of the U.S.   indicate that platform displacements (about 3 inches) were 
greater for  10 foot waves than for 30 foot waves.    This would appear to 
be further evidence of the necessity of considering dynamic behavior in 
the design of offshore structures. 

This paper is based upon a thesis submitted by Lieutenants Nolan 
and Honsinger for the degree of Naval Engineer under the supervision of 
the senior author. 
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