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ABSTRACT 

The paper concerns the movement by waves of cohesionless 
sediment lying on a horizontal bed. In particular it concerns 
the number of dimensionless parameters that are necessary to 
define the 2-phase motion at the bed;  the specification of 
which would enable perfect similarity to be obtained. 

It is shown that in general four dimensionless parameters 
are necessaryj but that when the motion of the water at the 
bed can be adequately defined by an orbit length (a) and a 
period (T), the two-phase motion can be described by the 
numerical value of three dimensionless parameters. This con- 
dition is satisfied when the wave-height is low, because then 
the orbital motion at the bed is sinusoidal and the drift 
velocity is negligible. 

Model and prototype experiments were conducted in a wave 
channel, using low waves, in which the scale for depth of 

water and for wavelengths was -37?. The dependent parameters, 

three of -which are sufficient to verify similarity of all 
aspects of the phenomenon were chosen to be ripple height, 
ripple length and transport of sediment. The identity of the 
dimensionless numbers signifying the ripple height, ripple 
length and transport in model and prototype, shown in Figs, 
8, 9 and 11, is proof that similarity had been obtained. 

1)   DEFINITION OF THE TWO-PHASE PHENOMENON, CHARACTERISTIC 
PARAMETERS 

Consider two-dimensional progressive wave motion of a 
real fluid with a finite depth (i.e. h < 1/2) over a 
horizontal and cohesionless movable bed (Fig. 1). If the 
motion of the fluid is able to produce the movement of the 
bed material then both motions depending reciprocally each 
on the other together constitute an inseparable mechanical 
whole — a "two-phase phenomenon". 

We assume that the following geometrical properties 
(independent of the absolute size) are specified: 
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(i)  the form of the waves (i.e. we assume that the 
function y/H = qp(x/L) has a certain definite form; 
where the x-axis travels on the still surface of 
the fluid with the velocity of wave propagation C)• 

(ii)  the form of the particle - size distribution curve 
of the "bed material. 

(iii)  the form of the particles of the bed material. 

In this case the two-phase phenomenon in the vicinity of 
the bed is completely defined by specifying the following 7 
independent quantities (characteristic parameters) 

p  density of fluid 

V> kinematic viscosity 

D any typical diameter of 
bed material (e»g, DKn, 
Dmax etc*>        5 

%    specific weight of the 
s bed material in fluid 

Clb the orbit length at the 
bed*) 

f period 

•\irb the drift velocity at 
the bed 

physical properties of 
fluid 

properties of bed 
material (0 

mechanical properties of 
the fluid motion at the 
bed 

Hence any mechanical quantity A related to the two-phase 
pnenomenon in the vicinity of the bed (regardless of whether 
A is a property of the fluid motion or of the motion of the 
bed material) must be a certain function of the characteris- 
tic parameters (1) 

A = fA( p, V, D, %, T, ab, I*) (2) 

The subscript A in f' indicates that the form of the above 

function varies as A, the quantity under investigation, 
varies. i I 

"at the bed" means "at the region just above the boundary 
layer". Since the distributions of a and w with depth 
both tend to be vertical as they approach the boundary 
layer more precise definition of location is not necessary. 
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Pig. 1 Pig. 2 
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2)   DIMENSIONLESS EXPRESSION OF THE  PHENOMENON 

According to the theory of dimensions each dimensional 
relationship (2) can always "be expressed in a dimensionless 
form as follows 

TTA= cpA(x, Y, z, w) (3) 

where the four variables X, Y, Z, W represent the following 
dimensionless combinations of 7 dimensional parameters (1)   ' j 

while the function TTA is the dimensionless power product 

T7A=  A-DX7SV (5) 

e.g. if A = 1 ripple length \\^ l-]5= qp (X, Y, Z, W)  (6) 

A = A ripple height TTA= A D
_<= qp (X, Y, Z, W) (7) 

*) 1  Selecting p, T, ab as "basic quantities we obtain from the 
"JT-Theorem" 

y_2abD  .  v_ P-Qb    T--Sfe  •  w7 WbT 
A T-v '  T" ytT

2 ' L~ D  '    ab 
Considering that 2-CU/T = U (mean orbital velocity) and 
l87bT is the distance of translation of the orbit during the 
period T,_it is realized that X is a "grain—size Reynolds 
number", Y characterizes the "ratio of the drag force to 
the weight of the bed material", Z is "initial relative 
roughness (or smoothness) of the bed" and W is the "rela- 
tive translation of the orbit due to drift". However, 
these distinctly interpretable basic combinations are 
inappropriate for experimental purposes (e.g. variation in 
the orbit length ab, the easiest case experimentally, lead 
to variations in each of the dimensionless variables, X, Y 
Z, W. Since according to the theory of dimensions any set 
of dimensionless variables can be replaced by any indepen- 
dent combinations of them, the variables (i+) have been _ 
chosen as the following independent combinations of X, Y, 
Z' W*    X«XYz"*£,  Y=YZ" ,  Z-Z  ;  W = fZ 
(See for "basic quantities". "jf=Theorem", "independent com 
binations" etc. in Ref. [ 1 ]) 
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A = Q  the weight of the transported bed 
material (during a certain time t) 
n&=G T?%' = %(X, Y, Z, W) etc. (8) 

If the wave-height is "small" in comparison to the wave-length 
("Waves with small amplitude") then the influence of the vari- 
able W is negligible, and thus the general form (3) can be 
assumed to be a function of 3 variables only: 

JTA= q?(X, Y, Z) (9) 

For example, in this case the expression of ripple length (6) 
becomes 

ni= D"= %^Xf  Y' Z) (10) 

which is the "family of the surfaces", or the "family of the 
family of curves". Putting X = const we obtain from (10) the 
following function of 2 variables only 

i = C^ (const, Y, Z) =q?(Y, Z) (11) 

which can be represented by a "family of curves"* If in 
addition, Y = const, then l/D is a function of one variable 
only; and consequently can be represented by a "single curve"; 

-i = Cp (const, const, Z) = Cp (Z) (12) 

(This explains why, in plotting 1 versus at, (which, in dimen- 
sionless plotting, implies (12)), the experimental points are 

so scattered (see for example ref. [2]) ', This is not only 
because the two lengths 1 and afc have not been measured 
properly, but also because it was attempted to represent a 
function of more than one variable by a single curve. Indeed, 
if fluid and bed material are kept constant then X is the only 
constant. In this case according to (11) the variation of l/D 

*7 R, A, Bagnold (ref, [3]) did not obtain such a scatter. 
He based his classification of experimental points on values 
of D and % , In an exact "dimensional classification" the 
value of. T should also be considered, since, if the fluid 
used is water, (P = const, V = const) and uyk= 0, as in 
Bagnold's case, then, according to (2), A = 1 must be 1 = 
fi(D, ys , T, ab) and thus in plotting 1 versus ab we have 
D, ys , T as parameters. However in Bagnold's case the 
variation in T was not large and its omission did not 
therefore result in much scatter. 
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depends on both Y and Z, and thus a representation of 1 as a 
function of a^, only without taking into consideration the 
period T (i.e. Y) is theoretically impossible). 

The results of the measurements of ripple-lengths carrie< 
out in the wave channel at H.R.S., Wallingford are 
shown on Fig. 3.  It can he seen that the experimental points 
corresponding to the same constant values of X and Y form 
their own individual curves which represent the relationship 
l/D = (pi(Z). Note that the points having the same value of 
X, hut different values of Y, form different curves, a fact 
which confirms experimentally that l/D = <3px (Y, Z) if X = 
const. Hence l/D is in fact a function of the three vari- 
ables X, Y, Z, as derived theoretically above. 

3)   CONDITIONS FOR DYNAMICAL SIMILARITY 

Let 06 be any quantity; 

OC the prototype value of 06 
// 

06 the model value of 06 

and  ^a = -zrrr the scale of 06 

The existence of dynamical similarity between the model and 
prototype implies 

X= 1 if 06 is a dimensionless quantity 
rk^l — const if 06 is a dimensional quantity 

If geometrical similarity exists, (i.e. the properties (i), 
(ii), (iii) are identical in model and prototype), then 
dynamical similarity of the two-phase phenomenon under con- 
sideration is provided by the identity of the model and 
prototype values of all dimensionless combinations defining 
the phenomenon. Thus the conditions of dynamical similarity 
for the two-phase phenomenon are 

Km  1  ; *Y- 1 ; *z- ' ; Aw- * (13) 

or considering (k) in terms of the scales of characteristic 
parameters:      /      3 ,{     _2        \ 

/   \' \' V V s '     \ 
V' \'  ^ys' ^T 

S  ^ 
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There are k  independent equations involving 7 independent 
scales. From a random choice of 3 scales the remaining It- are 
obtained "by solving (14). Thus theoretically it is always 
possible to obtain dynamical similarity of the two—phase 
phenomenon in the vicinity of the bed. However if in model 
and prototype the same fluid (water) is used then ^p = 

f\v=  1 
and the system (11t-) reduces into 

ft 

X 
• ft3 - 1 

^V 
'ab 

ft 

*i- (15) 

fturb \ ' ^"D " 1 

In this case there are 2+ equations involving 5 independent 
scales. Thus only one of them can be chosen at random. 

In practice system (15) is inconvenient to use since it 
involves the drift velocity, -uorb, which must itself be 
estimated as a function of the properties of the wave motion. 
Therefore it would be more appropriate to modify (15) so that 
10b is replaced by these properties. 

According to M, S. Longuet-Higgins (ref, [k])   atfb can be 
obtained as follows 

<UTb = const — (16) 

where 

U  = Clb 
(17) 

and 

Thus 

and therefore 

c   = T 

wb  = 
a 

const   —5L 
T  L 

fore 

V   ^T    \ 

(18) 

(19) 

(20) 

Consider that T, L and h are connected by the C-formula in 
following form    , 

9L  9T2  *U; (21) 
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where: 

^(f)=  2W tanh  2*£" (22) 

This is an exact expression for the theory of "waves with 
small amplitude" and represents the first order of approxima- 
tion for the "waves with finite amplitude" (Stokes). Assuming 
%   = 1 , we obtain from (21) 

(23) \ ~ ^v ^< 
Considering (20) and (23), the system (15) can he expressed 
as follows: / 

\   i    -   1 

X 

t «lb 

X^ ft*  =   1 

-2 
X • 9w -   A. •v 

(24) 

with 

A^j- = 
tanh 2w h7lf taTih[2Trh/L(fthA)j 
tanh 2Ji K/L'    " tanhltthTE (25) 

or for small prototype values h'/L'   simply: 

>V 
ftl. 

(26) 

Thus the value ^y depends on the prototype value, h'/L*» and 
the distortion, >h/^L. The system (22+) consists of 5 equa- 
tions involving 6 independent scales. Hence only one of them 
can he chosen at random. 

DISCUSSION 

a)  UNDISTOETED MODEL:  ( \=   \,   i.e. fty= 1) 

Substituting %*• = 1 the system (22+) gives unity for all 
scales. Thus by using the same fluid in model and prototype 
dynamical similarity of the two-phase phenomenon on an undis- 
torted model is impossible. 
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If the influence of drift (the condition  9tw s 1)   can he 
neglected,   i.e. if the fourth equation in (2k)   is rejected, 
then the solution of (21+)  gives 

\~  \ 

!%" ? ' (27> 

\= \*= Aak 

This is a Froudian model (%„  = V~90 > where the bed material 
is heavier hut finer than in prototype. The velocity scales 
in this case are: 

K= K. '   V *"* ;   ^= tf* <28) 
h)   DISTORTED MODEL (DRIFT CONDITION IS SATISFIED) ( ft„/1 ) 

Preserving the fourth equation and assuming 9^^ 1 the 
solution of (2k)   gives 

\ =   ^at 

\"    *!„ (29) 

\~    \b 

\  Vs \ 
Selecting ^T = %n   we can obtain all the other scales includ- 

ing Av= ^"ab  i.e. 

tanh[2Tth7L/(^/^L)]    v3 (•\ 
tarihjwK/L'    = AL U0) 

Hence, knowing ^T and the prototype value h'/L*> ^h 
is 

obtained as the solution of the transcendent equation above. 
The model is not Froudian ( *\r = 9?L) and the bed material con- 
sists of larger but lighter grains than in the prototype. 
Indeed if /Xh< 1 then (30) gives %i  > 1 , and thus >ai> > 1 and 
consequently ^„ > 1 and %y <  1 . Obviously this non-Froudian 
model in which *>iL > 1 and %.> 1 is not as convenient for 
practical purposes as the undistorted model discussed in (a): 
it therefore represents only a theoretical solution of the 
problem. 
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k)        THE EXPERIMENTAL RESULTS 

In order to confirm the theoretical considerations 
stated above, experiments were carried out in the 75 cm-wide 
wave channel at H.R.S., Wallingford. The measurements were 
made on a Froudian model (as described in 3(a)), It has to 
be proved that in such a model the conditions for dynamical 
similarity at the bed are 

*XX = 1  ;  ftY= 1  j ^s 1 

(assuming of course that (i), (ii) and (iii) are specified). 
If, in fact X, Y, Z represent the "complete set" of dimension- 
less variables, then the conditions 

X* s X" 

Z1 s Z" 

must make all corresponding dimensionless functions, C(^ and 
qp*, identical 

q/= qj»(X», Y\ Z«) = 9A(X«, Y", Z") = q>'     (31) 

with the  scale  of A 

*A=   #•*&%? (32) 

Perspex ( 7s = 0,19) was chosen as bed material for the proto- 
type, and coal ( <y/= 0,1+8) for the model.  Thus 

\  = •$-   = 2«528 (33) 
s    OS 

According to the first and second equations of (27) 

^    1 

^ 
0.735 (3U) 

Fig. 1+ shows the particle-size distribution curves of the 
perspex and coal used in the experiments. In order to satisfy 
the geometrical condition, (ii), the coal was prepared so as 
to have a particle-size distribution curve similar to that for 
the perspex. As shown in Fig, U  the actual ratio ftD was 

V\-W-0-7* <35> 
correspondingly the system (27) yields: 
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\=   \ = °'7k =  1/1*35 
7^T = 0.74

2 = 0.5U8 = 1/1 .82 

\=  \=  0.7^ = 0.301 

Selecting the prototype values 

T' = 1.82 s = const 

h' = 65.0 cm = const 

and consequently L' = 399 cm = const 

the corresponding model values were 
» 

T" = 1.00 s = const 

h" = 19.6 s = const 

L" = 120 cm = const 

(36 

(37. 

(38; 

Therefore: 

and 

206,13 = const ; Y' = 77,75.10 6 (39) 

X" 210,67 = const ; Y" 75,39.1 0~6 (kO) 

Since £?r = 97,81$ and £?• = 96,65% it can be assumed that the 
X x 

conditions X' = X" and Y' = Y" are satisfied from the point c 
view of the accuracy of measurement. Since a.\,  (i.e. Z) was 
the only variable, the experimental points for both model anc 
prototype must lie on the same curve ( TTA = cpA(z)) in the 
dimensionless system of coordinates for any related mechanics 
quantity A. This statement was proved experimentally for 3 
independent aspects of the phenomenon A1, A2, A3 (which, 
according to the theory of dimensions is sufficient in order 
to prove the existence of dynamical similarity). 

A-] = 1 ripple length 

A2 = A ripple height 

A3 = G the total weight of the bed material trans- 
ported during the certain time t from a tra;y 
inserted in the bed. 

IT-values of these quantities are respectively 

nx 
= -L. 

D 
17 - -A- TT - -£_ 
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The measurement of the orbit lengths a^, was made "by means of 
a pendulum which consisted of a disc which was weightless in 
water, moving on a spanned steel string parallel to a ruler. 
For the constant prototype values h = 65 cm and T = 1 ,82 s 
this instrument gave the relationship between a-^ and H as 
shown in Pig. 5 "by curve (1), As seen from Pig. 5,  as H 
increases this experimental curve systematically deviates 
from the theoretical curve (T) ((T) representing the linear 
relation between a^ and H for waves of small amplitude). It 
was assumed that the ratio a^/H given by the curve (1) is 
valid for all waves of the same i/h. Therefore the orbit 
lengths in the model were obtained from curve (2) (drawn 
homologous to curve (1) to the scale ?\at, = 0.7i) by measuring 
the wave heights H. 

For the measurements 1 and A the bed of the flume (8.00 
x 0.75 m2) was covered with material to a depth of not less 
than 3 cm. The values 1 and A were obtained as mean values 
of a "ripple train" (consisting of at least 20 ripples) which 
was traced from the central observation window on the side of 
the flume. 

The total weight Q leaving the tray (Pig. 6) during the 
time intervals t* = 15 min and t" = 8.25 min in prototype and 
model respectively was measured as 

0 = Qx  + Gr 

The results of measurements of ripple length in model and 
prototype are shown in Pigs. 7 and 8. The dimensional plot- 
ting in Pig. 7 shows that the experimental points of proto- 
type and model form two homologous curves to the scale "^a^ = 
0.7U;  whereas both prototype and model points form the same 
curve l/D = ^p(Z) in the dimensionless plotting in Pig. 8. 

In Pig. 11 the dimensionless ripple heights A/D are 
plotted. Once again there is a tendency for both model and 
prototype experimental points to lie on the same curve 
A/D = ^(Z). (Note that l/D is always an increasing function 
of Z whereas A/D tends to zero at a certain value of Z.) 
Thus the ripples disappear because their height, and not their 
length, tends to zero. 

Pigs. 10 and 11 show the results of measurements of the 
total weight of bed material transported from geometrically 
similar trays during equivalent periods of time. In this case 
also, the experimental points form homologous curves (parallel 
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straight lines with log-log coordinates) to the scale /\cib = 
0.74 in the dimensional plotting in Fig, 10;  and a single 
curve (straight line) with logarithmic coordinates in the 
dimensionless representation in Pig. 11 . 

This study was carried .out as part of the research 
programme of the Hydraulics Research Board of the Department 
of Scientific and Industrial Research, and is published with 
the permission of the Director of Hydraulics Research. 
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