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INTRODUCTION 

On studying the transformation, breaking and run-up of a relatively 
steep wave of a short period, the theory for waves of permanent type has 
given us many fruitful results. However, the theory gradually loses its 
applicability as a wave becomes flat, since a considerable deformation of the 
wave profile is inevitable in its propagation. 

In § 1, a discussion concerning the transformation of a long wave in a 
channel of variable section is presented based on the non-linear shallow 
water theory. Approximate solutions obtained by G. B. Whitham's method 
(1958) are shown. Further, some brief considerations are given to the 
effects of bottom friction on wave transformation. 

In § 2, breaking of a long wave is discussed. Breakings on a uniformly 
sloping beach and on a beach of parabolic profile are considered and the 
effects of beach profile on breaking are clarified. 

Finally in § 3, experimental results on wave run-up over l/30 slope are 
described in comparing with the Kaplan's results. 

1. TRANSFORMATION OF A LONG WAVE OF FINITE HEIGHT. 

1.1. TRANSFORMATION IN SHOALING WATER. 

When the effects of bottom friction is neglected, the conservation 
equations of mass and momentum in the non-linear shallow-water theory are 

and    V*+      +   i/*2/** --?*?** (1-2) 

where the symbols *l    , h.    , and X   are defined in Figure 1, V    is 
velocity, ±*  is time, and $* is the gravitational acceleration. The 
asterisks denote dimensional quantities. The following dimensionless 
variables are introduced for the sake of simplicity : 
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X m Z*/to*        , k - hVhf    > 1=1 Vho* 

where Q* = distance from the origin to the shoreline 
fa * = water depth at the origin 

Let the depth be given by h. —hex)    , the basic equations are as 
follows when these dimensionless variables are substituted : 

[v(h + t)]x =-U (1-3) 

Vt + VVx.    - - *x (1.4) 

The characteristic equations to be derived from these hyperbolic equations 
are 

dx /dt - v + c (i_5) 

d(V-h 2C) + dir **0 (1-6) 

dx/cC-t**   T/-C (l_7) 

d(2/-ZC)    + d-b  mm  O (1-8) 

where C2 «* k + £ 

Next, a compressive wave propagating shoreward will be considered. It 
is well known that a compressive wave continues to deform its profile in its 
propagation and eventually breaks by the curling of the wave front. And 
from the physical point of view, the wave is considered to form a bore after 
breaking. In this meaning the theory of a bore in shoaling water given by 
H. B. Keller, D. A. Lavine, and G. B. Whitham (i960) would give some infor- 
mations on the transformation of a deformed long wave. 

Suppose that particle velocity and propagation velocity of a wave in 
shoaling water are related to surface elevation by the following expressions: 

2/ = 2/kCl/f-hM  - I ) (1-9) 
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c - fk fTTM t1"10) 
where M =   ^ / ^ 

Since the above relations are precise solutions for the case of a uniform 
depth, they must also be approximately applied in shoaling water, provided 
the change of water depth within the distance between the wave front and the 
crest is not large. It is of interest to compare the transformation of a 
wave governed by the above relations with that of a bore, since the above re- 
lations differ a little from the bore conditions as are shown in the following 
relations : 

V'/lf   £~ ( /+M- J£ M2) 

C'/ C     ST C/+4;M-£ M*) 

where V/ is the particle velocity just behind the bore and C/  is the 
propagation velocity of a bore. 

Substitution of Eq.(l-5) into Eq.(l-6) leads to 

ct( V+ ZC)  — cth/(V-hC)*=*   O (1-11) 

And substitution of Eqs.(l-9) and (l-lO) into Eq.(l-ll) yields the 
differential equation concerning M  as a function of h,   : 

±dk   . _    2 {*/?** -2} 

When M is small, Eq.(l-12) is approximately equivalent to 

(1-12) 

dh/k  » - -£• o(M/M U-13) 

Therefore, M oC    h ~ j      2   <*    h~ (l-14) 

This is a well known relation for waves of small height. 

Integration of Eq.(l-12) gives 

    -4/5    ,    ^6/5 
k   == Ao (l/T+M - /)      (6l/H&-/) (1-15) 

Where Ao  is an integration constant to be determined by a boundary 
condition. 
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Under the boundary condition   M * /% at   h.   -   I    , Eq.(l-15) becomes 

L = f^^i   -I  ) 4/Sf i/JTJTo  ~ '  ) 6/* (1-16) 
{fi+M     -!' ( 6/7TM   - / / 

Turning to the details of the relation given by Eq.(l-12), it will be 
seen that M  increases monotonically as h   decreases when M y o 
However, this manner of variation does not exist in the height £ . The 
maximum of <£ occurs when 

dl I oih.  « M •+•  h cLM/dh  =*. O (!_17) 

Substitution of Eq.(l-12) into Eq.(l-17) gives 

M^^/J    }      or     K*x*= 0.77 Xk (1-18) 

The relation between (f/&) and (^/fo) obtained from Eq.(l-16) is illus- 
trated in Figure 2. For the purpose of comparison the corresponding re- 
lation for a bore obtained by H. B. Keller, D. A. Ldvine and G. B. Whitham 
(i960) is illustrated in Figure 3. 

In the above analysis two interesting features are found, one of them 
being that the rate of amplification of wave height in decreasing depth 
decreases as the relative wave height increases and the other being the 
existence of the maximum of wave height. 

1. 2. TRANSFORMATION IN A CHANNEL OF VARIABLE WIDTH. 

Suppose a channel has a variable width and a uniform depth and let the 
dimensionless channel width be given by b - t>(x) •   Dimensionless 
variables are defined as follows : 

U   « U*/ U0* J      *n*L     -i—i*/10* 

where    B* = toidlh   of channel. }    h0  =» uniform  /w/fcr d^tith 
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The positive characteristic equations of the conservation equations of mass 
and momentum, in the dimensionless form, are 

dx/dt  —   V •*• C (1-19) 

d(v+zc )   + 7/C ( bx/b) d-t = O (1-20) 

By the combination of the above two equations, one has 

etCVH-ZC)-*-^-^- -££-   = O (1-21) 

When h = /   is considered, substitution of Kqs.(l-9) and (l-lO) into 
Eq.(l-2l) yields 

JUL^..   3f^-J        if (1_22) 

When # is small, Eq.(l-22) is approximately 

dk   « - 2 ^ (1-23) 

which gives       -? ec     b ~ '/2 (l-24) 

This is the well known relation for waves of small height. Under the 
boundary condition •? = 10  at b  m bo  »  Eq.(i-22) becomes 

* \-jT7%)   (ffTW0-f) 
(1"25) 

The relation between (ty%) and (Me) obtained from Eq.(l-25) is 
illustrated in Figure 4. The wave transformation in a channel of variable 
width shows different character from the preceding case of variable depth. 
The rate of amplification of wave height in converging channel continuously 
increases as the relative height of wave increases. 

1. 3. EFFECTS OF BOTTOM FRICTION ON WAVE TRANSFORMATION. 

The conservation equation of momentum which accounts for the effects of 
bottom friction is given by 

v**   + v*Vl* = ~?% -k'(v*2/h*+ ?*)      (1_26) 
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where   k'-^^/C*2        and    Ce*= Che'zy'S toujhness factor 

By using the same dimensionless variables as in 1.1 the positive charac- 
teristic equations of conservation equations of mass and momentum on a 
uniformly sloping beach, f^ss f— x.    ,  can be given by 

dX I dt  —   V + C (1-27) 

dCV+2C) + {l+ k(t//c>z} oft~>0 (1-28) 

where     k = k'/S   ,    mnd      S = beach   slope. . 

Substitution of Eqs.(l-9) and (1-10) into the equation which is obtained by 
combining the above two equations leads to 

h   UN N*((>M2- /)(N2-f)-4ltCN-/)2 (1-29) 

Provided the terms smaller than (fiS—/)  can be neglected, Eq.(l-29) approxi- 

where       /V — yT+M 

Lded the terms SD 
mately integrates to 

k ££ A0e~4/S(«£+{)*ie*f>(- ^6) (1-30-1) 

where    £ = //—/ 

A Lt *•-*£ - J« ) 
f ~ oT<- ^     40c &  J 

In a special case of   oj= 0 »  lt=4-   the above relation can be reduced to 

kQZ AoE -*/S"e*/*/- 2£ ( ~£ + 2 )} (1-30-2) 

In the case of a uniform depth the attenuation of wave height will be 
expressed by 

d(-2/+ZC)+ k'CV/C)1-^—   . O (i_3!) 
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Where k'— 3 /Cg *   and the dimensionless variables are similar to those 
in 1. 2. Substitution of Eqs.(l-9) and (l-lO) into Eq.(l-3l) gives 

2 k' ( VH^T   ~ I  )2 

which can be integrated as 

where    A/=s /T+T      <thd       M> is   fi/ at  X =* Q 

As an example, attenuation of long wave under the condition k = 0.0f is 
illustrated in Figure 5. However, the value of roughness factor, k!~0.of is 
only an example and experimental studies are necessary to discuss further. 

2. BREAKING DP A LONG WAVE IN SHOALING WATER. 

A long wave continues to deform due to the difference of its local 
propagation velocity and eventually breaks by the curling of its front. 
From the mathematical point of view, breaking points are expressed by an 
envelope of intersections of characteristic curves. In the following a 
wave which has a non-zero slope at the wave front and propagates shoreward 
into quiescent water is considered. 

At first, a uniformly sloping beach with a depth of /i*"*=S(4> -X ) 
will be considered, here x is the beach slope. It takes a dimensionless 
form of 

k= / (2-1) 

Considering a characteristic curve eCx/ett» V-t-c t  which starts from the 
origin at time -6=- t    , one has the following equation from the relation 
given by Eq.(l-6) : 

Cct)- C(fzy-jU~r)~^fvct)-v(T)j    (2_2) 

Then, the positive characteristic curve is 
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By the combination of Eqs.(l-9) and (l-14), the particle velocity at time t 
along the above characteristic curve can be given approximately by 

VCt) 33 1 (<z)h- J/4- j t*Ct> k~2 (2-4) 

Substituting Eq.(2-4) into Bq.(2-3) and considering Eq.(2-l) one has 

-*'{•* + ** *rx' + {x*+-~}   (2-5) 

where     (h ~  fCT)        *-net       CCl:)~ Cl+0~)^2 

It is assumed that the solution of Eq.(2-5) is expressed as a power 
series of Q- 

Z = X0  + <rx, •+ <r-2x2 •+ - - • (2-6) 

The intersections of characteristic curves are obtained from 

•$? = 4f + * $r •*• &*' -"" ~° (2-7) 
The initial breaking point is given by putting T =. 0   and O" = O    in 
Eq.(2-7). Thus, the initial breaking point is determined from the first 
two terms of the right hand side of Eq.(2-6). 

Substituting Eq.(2-6) into Eq.(2-5) and considering the initial con- 
dition, x=*0  when 6—T   » one has 

Xf   = IS00O00Ct-T) -f 0. /S75'00(£~T)2 

+ 0,0 7dt2.5(t-T)Z +6.Q34-t?0(t:-,Z)4i '     ^2~8' 

+ 0.0/5381(*-T)5+ 

With the substitution of Eq.(2-8) into Eq.(2-7) a relation to give the 
initial breaking time -bb is obtained. 

-/ + ~ty + tn it, (l.zooooo + OJ87*00 ti> 

+ 0.0 78f2S tbZ + 0.034/801^+ 0.01*38! i£ 

t-. --  ; =  o 
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m for a uniformly sloping beach. 
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where m = (4£) = - (4?-) * 

The corresponding breaking point   Xb  can be found by   Xb^ X0Cti,}   » since 
TJsa o     and   <r=s 0    ; 

/       2 
Xfc   = tb - j-tt. (2-10) 

The curves of f i> and Xi. as a function of initial slope m.    are 
shown in Figure 6 and 7, respectively. For the purpose of comparison, the 
corresponding values obtained by H. P. Greenspan (1958) are plotted in the 
figure which shows a good agreement with the present theory. 

The above theory gives an explanation about the effects of beach slope 
on wave breaking. Provided the wave is sinusoidal, the relation between the 
initial slope m  and the wave steepness can be given by 

m = CK/S)(.Hl/Li) 

where      f-li  ss wa.ve height   at  1he   origin 

Li —  K*.ee Lenglh at 1he   oHfin 

S   =   betich   slope 

Thus, the breaking position is determined for the given values of beach 
slope and wave steepness. And the transformation of wave height between the 
origin and the breaking position is assumed to satisfy the following re- 
lation ( the analysis in § 1 considers only a oompressive wave or elevation, 
and a rarefaction wave or depression is not considered ) : 

Then graphs showing the relation between Hb/Hi and ffi/ii are obtained for the 
given values of beach slope. 

However, the above graphs are not the relations between deep water and 
the breaking position. Then a relation between the deep water and the origin 
is also of interest to be calculated. In the present calculations relative 
depth at the origin hjii is assumed to be 0.044 • Provided the small ampli- 
tude theory is applied, the relations between the deep water and the origin 
are 

Hb/Ho = IA (Hb/Hi) 

Ho/T2 = *J2(H0/U)=Hi/Li 

At the origin       (C)   n   = / o-=o 
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Results of the present calculations are compared with the experimental 
curves given by H. W. Iversen (1952) in Figure 8. It would be seen from the 
figure that the present theory gives an explanation about the effects of 
beach slope on wave breaking, although some assumptions are included in this 
calculations. 

Next, a consideration on the effects of bottom profiles on wave breaking 
will be given. For an example, let the depth fe= (f-x)  be replaced by 

k =   I - X' (2-11) 

The positive characteristic equations are 

dx./dt = 7/ +  C (2-12) 

dCV + ZC) + Zx.cL± «. 0 (2-13) 

Eq.(2-13) can be written as . 
VCt)  + 2CCt) =   VCT) + 2CCT) - 2frzd.-b 

or CCt) = CCT) -  j{v(t)-  V(T)l   -f* XcLt (2-14) 

Combination of Eqs.(2-13) and (2-14) gives the following equation of 
characteristic curve which can be derived by the same reduction described in 
the first example : 

(2-15) 

dt 

(I I    2     3   4.      '    6, ) »* 

Assuming that the solution of Eq.(2-15) is given by a power series of o- 
such as Eq.(2-6), the function x0  » X/  »  can be determined 
successively. 

%'•}-£*,**&+ &tf+&*?±-    (2-17) 
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Since the initial condition is x =. o    when -6 — T , the solution of 
Eq.(2-16) which satisfies the initial condition is assumed to have the form 

x0 - E a2llH a-T)2^' (2-18) 

where 4n  is a constant to be determined from Eq.(2-16). 
Substitution of Eq.(2-18) into Bq.(2-16) yields 

Or     XQ — (4—l)-0.f66S7(*-T>3  + 0.00f333 (-6-T)£ 

- 0.000 /fSCt-T)7 + ... (2_i9) 

In the same way, one has 

Xf   =  1.500000U-T) - 0.125000 (+-1)3 

+ 0.046875 (b-H)S +0.0/2?84(t-T)7-t'~    (2-20) 

Thus, the initial breaking time tb  and position Xb are given by 
Eqs.(2-2l) and (2-22), respectively. 

-/ 4- 0.6-00000 tb
2 - 0.0 41U 7tb,4-f O.OOlttftb6, 

-trnty ( /.5-00000 - 0./25000 tb2+ o.o46s75^b4 

+ a.o/z?84.tb6+ .. • ) = O (2_2i) 

Xb = *£ - 0. f 666671^  + 0.008353 tb * (2_22) 

- 0.oao/?8 tb7-*• 

The curves of £"£ and Zj> is a function of the initial slope W are 
shown in Figure 9. Then, two values of water depth at the breaking position 
which are obtained on the uniformly sloping beach and the parabolic beach, 
respectively, are compared in Figure 10. As will be seen from the figure, 
breaking of a long wave is affected by the beach profile. This may be a 
reason why a large scattering is found in connecting the breakers of very 
flat waves with the deep water waves. 

3. EXPERIMENTS ON THE RUN-UP HEIGHT OF A LONG WAVE 
OVER A UNIFORMLY SLOPING BEACH. 

The author carried out some preliminary experiments on the run-up 
height of a long wave with the aim of investigating the hydraulic behaviours 
of Tsunami which runs up a beach. Few data exist about the run-up characters 
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Fig*  9.     Breaking time tD and position xfc as a function of 
initial slope m for a beach with parabolic profile. 
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Fig.  10.    Effects of beach profile on wave breaking. 
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of very flat waves as Tsunami which usually has a period of several ten 

minutes. 

Experiments were carried on in a wave tank of 14cm width installed 
with a pneumatic wave generator at one end and a beach of l/30 slope at the 
other end. Water depth at the foot of the slope was 9cm. Three kinds of 
wave periods, lOsec, 15sec, and 20sec were given by adjusting the rotating 
speed of a rotary valve. Values of wave steepness at the foot of the beach 
were varied from 7'X10-4- to /.4-X./0-*. 

Relation between the relative run-up height and the wave steepness is 
shown in Figure 11. In the figure, R    is the run-up height above S.W.L., 

H   and L   are wave height and wave length at the foot of the slope, 
respectively. For the purpose of comparison, the experimental curve obtained 
by K. Kaplan (1952) is indicated on the same figure. Kaplan's relation is 

£///» 0.3SI (H/L)-"^'6       for   / »n 30 slope     (3-1) 

Since a solitary wave was used in Kaplan's experiments, two curves are shown 
; the one is the curve in full-line on which the height of solitary wave is 
replaced by the height of the long wave and the other is the curve in broken 
line on which the height of solitary wave is replaced by the half wave height 
of the long wave. 

The author's results are fairly close with the latter curve, though the 
points in the present experiments stand somewhat below. A little incon- 
sistency of the two experiments is presumably due to the difference of hy- 
draulic characters between a long wave and a solitary wave. Bowever, the 
author would like to reserve further discussions in this respect, since the 
scale of the experiments was too small to investigate the details. 

4. CONCLUSION 

1) By the use of approximate expressions for particle velocity and pro- 
pagation velocity, a relation of wave transformation in shoaling water is 
derived. The rate of amplification of wave height in decreasing depth 
decreases as the relative wave height increases. And the maximum height of 
wave crest appears when  -2= 0.778h.  • 

2) A compressive wave is considered to form a bore after its breaking. 
A relation on the transformation of a bore in shoaling water has been 
presented by H. B. Keller, D. A. Lavine and G. B. Vhitham. For the purpose 
of comparison, two relations of transformation for a long wave and a bore 
are shown in Figure 2 and Figure 3, respectively. 

3) Further, a relation of wave transformation in a channel of variable 
width is derived. The rate of amplification of wave height in converging 
width increases as the relative wave height increases. 

4) Brief descriptions about the effects of bottom friction on wave 
transformation are given in section 3, § 1. 
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5) An approximate method to calculate the wave deformation is presented. 
As an example, the Initial breaking time and position for uniformly sloping 
beach are calculated. The author's results show good agreement with the 
Greenspan's precise solution. Next, the initial breaking time and position 
for a beach of parabolic profile are calculated. The effects of beach 
profile on wave breaking are clarified. 

6) The fact that the breaker height is affected by beach slope for a 
very flat wave has been shown in the Iversen's experiments. An explanation 
of the above fact is given on the basis of theoretical breaking conditions. 

7) Experimental results on wave run-up of a long wave for l/30 slope 
are described. An experimental relation between the relative run-up height 
and the wave steepness is presented. The relation is fairly close with the 
Kaplan's curve provided the height of the solitary wave is replaced by the 
half wave height of the long wave, though the points in the present 
experiments stand somewhat below. 

REFERENCES 

Whitham, G. B. (1958). On the propagation of shock waves through regions of 
non-uniform area or flow, Journal of Fluid Mechanics, Vol.4, Part 4. 

Keller, H. B., Levine, D. A., and Whitham, G. B. (i960). Motion of a bore 
over a sloping beach, Journal of Fluid Mechanics, Vol.7, Part 2. 

Greenspan, H. P. (1958). On the breaking of water waves of finite amplitude 
on a sloping beach, Journal of Fluid Mechanics, Vol.4, Part 3. 

Iversen, H. V. (1952). Waves and Breakers in shoaling water, Proc. of 3rd 
Conference on Coastal Engineering. 

Kaplan, K. (1956). Proc. of A. S. C. E., Vol.82, Journal of the Waterways 
and Harbors Division, No. WW 3. 

76 


