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INTRODUCTION

Fresh water spreading out from the mouth of a river
as it enters a salt sea may preserve its identity for a
considerable distance on the surface if wind-generated
waves, longshore currents and tidal streams are capable
of producing only weak mixing. FPig. 1 shows the three-
dimensional shape of a fresh-water tongue overlying more
dense salt water, derived by Takano (1954) on the
assumption of constant eddy viscosit{ and constant
density in the fresh water layer, below which the density
inereases according to an assumed law, making an asymptotic
approach to the density of salt water. Takano's model
i: thus a water jet entraining salt from around and below

Salt or brackish water may penetrate along the deep
channels of an estuary in the shape of a wedge comple-
mentary to the fresh water tongue, the salt wedge
retreating seawards as heavy rainfall increases the river
discharge, and advanecing in dry weather intervals. Tidal
streams cause a regular oscillation of both fresh and
brack water in flood and ebb directions but the seasonal
movements of the sloping boundary between fresh and salt
water may still be important in low-lying delta regions.
Strong tidal streams lead to intense mixing, when neither
a fresh water tongue nor a salt wedge can be distinguished,
but the isohalines (salinity contours) preserve the
general wedge pattern - see Fige. 3 to 6.

In the upper reaches of an estuary it is possible to
study the effect of the tidal motion by treating it as a
simple harmonic perturbation of the uni-directional river
flow, Even in the middle portion of the estuary where
there is reversal of the horizontal motion, one may seek
a "quasi steady" solution for the net effect (seaward
movement of fresh water) while allowing for the increased
turbulence due to the tidal action. At the seaward end
of the estuary there is little deviation from the
astronomical tidal rhythm, so the problem reduces to
simple harmonic oscillations of salt water. Higher
harmonics may be introduced as an extension of the simple
solution. For a first approximation it is sufficient to
congider flow in the longitudinal vertical plane, to
assume that the pressure distribution is hydrostatic as
in long wave theory, and even t0 neglect inertia terms
when investigating net effects.
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e
.-~ Fgl Tongue of fresh water in shape

of hyperbolic paraboloid
{after Takano).

Qn

Fig.2. Longitudinal section of estuary, to exaggerated

vertical scale, showing the circulation pattern.
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ESTUARINE CURRENTS AND TIDAL STREAMS

DENSITY DISTRIBUTION

For engineering purposes we may regard the sea as
an infinite reservoir of salt water, its edges being
diluted by fresh river water and rain while the balance
is maintained by evaporation from its surface to the
atmosphere. We postulate a slow current of seawater
landwards along the bed, its density being decreased by
vertical diffusion and mixing, and a surface flow sea~-
wards of fresh water being gradually rendered brackish
by salt rising from below. This circulation is illustrated
in Fig. 2 by full-drawn streamlines, the broken lines
being profiles of longitudinal velocity. The ehain
dotted line indicates the surface of gero met motion in
the longitudinal direction, and is obviously a place
where high shear stresses may be expeeted, even exceeding
the bed shear stress. This is a valid picture even
when tidal motion is superimposed, although then the
surface of zero net motion must be defined by averaging
over a tidal period; 1t has a real existence only near
the instants of "slack water". O'Brien (1952) suggested
that landward velocity near bed is approximately C.JH.D,
where ¢ = Chézy coefficient and D =i§%ﬂ:

In many estuaries it is observed that the average
salinity over a cross-section, and hence the average
density if temperature differences can be neglected,
increases from river to sea in nearly linear fashion in
the middle reaches (Fig. 7), the rate of increase being
smaller near the river (x = 0) and the sea (x = L).
This linear increase is related to the_fact that the
maximum velocity of the tidal stream U_ scarcely
changes along the estuary* so the intengity of mixing
shows little variation. The water gapnd dissolved salt
clearly oscillates a distance X = which -is usually
a small fraction of the length L. For exanple,
if U = 1.4 m/sec. or approximately 3 knots, and the
angulgr veloclty of the lunar semi-diurnal tidal stream
is w = 0.00014 rad/sec., then X_. = 10 km, whereas
L == 80 km for a typical estuar?.

Fig. 7 shows the average density distributions at
slack water after high water (change from flood to ebb),
and slack water after low water (ehange from ebd to
flood), on the assumption that

= B+ Ap. sin? 'THT (1)

* Indeed, Pillsbury (1939) inferred from the Delaware,
and Otter and Dai (1960) showed %ore rigorously with
application to the Thames, that is constant in a
long estuary whose breadth increaSes exponentially with
X.
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where P = density of fresh water entering from river
and Ap = density difference between sea and fresh
water. This density distribution fits the Thames data
quoted by Inglis and Allen (1957), but other analytical
curves such as the Gaussian integral and the hyperbolie
tangent would also be suitable.

There is also an inorease of density from surface to
bed, whioh is nearly linear in a well-mixed estuary, as
indicated by the isohalines in Figs. 3 and 5. Unless
there is a deep channel through tidal flats there is
little variation of density in the transverse direction.
The effect of the Earth's rotation is to tilt the
isohalines (Pig. 4) much more than the water surfaoe.
Assuming longitudinal translation of the isohalines
without rotation, we now seek for a suitable law descri-
bing variation of the vertical density difference along
the estuary.

. Mass of salt
Defining the salt concentration e = HEEE—ET-§§§3}

at a point, the density is P = (1+°)‘fb’ and the vertioal
flux or transfer of salt per unit area is aF'v"v' = ’P‘NSalt %9;-
where NSalt is the vertical exchange coefficient for
salt, or the eddy diffusion ooeffioient. The Reynolds
shear stress, or vertical flux of momentum, is similarly
T= -f—.u:w-:‘a.nmmnm%g_, and Ny oo .o i often
called the eddy viscosity ooefficient. Here U and

W are the time-mean velocities, u and w the veloecity
fluctuations, in the longitudinal and vertical direetions
respectively. Jacobsen's method of averaging over a
tidal cycle then yields the equations

2 2 3¢
U3 = 2N, % 2
% __3T 3 2
and —ﬁ‘qr;? =AzF ‘ﬁ(P'NMomentum'-‘S%> (3)

Extensive measurements have shown that the eddy
coefficients are unequal, their ratio Hﬁomentum

TR S
being a funotion of the local Richardson number Ri = S
Thus Taylor (1931) showed that Y = R1 if the work doﬁe‘“z
by fluid turbulence is wholly devoted to mixing (i.e.
increasing potential energy of variable demsity fluid),
and ¥ > Ri if some energy is dissipated by fluid visoosity.
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With specified velocity and density distributions, TPaylor
showed that stable internal waves are possible when

Bi > 0.25, but no waves can exist if Ri 0.25.
Other workers have derived different stability criteria.

Let us assume that the vertical distributions of
and NSalt are similar, hence the ratio Y
does not vary with 2z. Take N

z
Momentun = K-Ux-2.(1-F)

as in a river, so NSalt = %.U*.z.(l-n). The ratio Y

has typical values 2 t0 5 in a well-mixed estuary, and 20
to 50 in a stably stratified estuary with a salt wedge.

KNow %%s z—s if the density difference between
bed (z = 0) and surface (z = H) is Sf , & function of x.
Also %— %—z —%‘F sin-"-'f from (1). The
advection term U‘.E_ in (2) obviously changes sign in
the vertical. To get an idea of its effect, assume zero
net velocity at mid-depth and surface velocity UH equal
and opposite to velocity near the bed, thus U = UH(2§-1).
Substitution in equation (2) gives

B2 5 -)-GRp-sn JE = [‘g" &-% )]
b )‘r

whence %=%%APW!E’ (4)

Hence the vertical density difference is greatest in the
middle reaches. It is zero at the river but not quite
zero at the seaward end of the estuary, so that (4) is
not reliable when x-—»L.

1“Moment:um

t = mean density of water above surface of zero
net moti % an g = mean density of water below surface
of zero net moti ﬁ at section x, then the density differ-
ence between the two layers is P2 Pl k.

Typiecal values of the longitudinal and vertical den-

sities are SF
30 S -
-F{; 1565 and Po T—-in a well-mixed estuary.

MEAN VELOCITIES OF CIRCUILATION

The equation of continuity for quasi-steady condi-
tions states that the volume of water between two cross-
sections is constant, neglecting precipitation, evaporation,
and tidal motion. Referring to Pig. 8, let
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Qr = discharge of fresh water from river

section

Ql = Al.ﬁl = flow above surface of zero net motion} at
X

Qp = A.Up = " below " noom n "

Discharge and velocity are measured positive in the
direction of x increasing, i.e. from river to sea.

Let h = height above bed and b = breadth of surface of
zero net motion, through which there is an upward velocity
Wo meaned across the breadth, at section x.

Between O and x +the continuity requirement gives
Ql + Qz = QR (5)
Considering the space between sections x and (x + Sx)

above the surface of zero net motion Iin Pig. 8, the water .
entering per unit time is Q; + Wo.b.Sx, and the water

leaving per unit time is Q +’3—Q‘i-8x, whence

Ax
204 _
dx b. W, (6)
Similarly, — (BQ' = 1)on

9%

Denoting salt concentrations by the same subscripts
as densities, c°=0 ’ c’.:-g--l ,ff-&‘-i, there must be no

change in the mass of salt in any part of the estuary,
and by definition, the mass of salt is c¢.(Mass of water),

=2mr@&=emﬂmﬁthmmm ZmPQ=O. More
+T

precisely, J: c.r.Q.Jte-- constant. This is really a

statement of Knudsen's hydrographic theorem.

Turning again to Pig. 8, we can draw up the salt
balance between sections 0O and =x. Application of the

above theorem gives
Cu~pvcko + 4P Qy +Cp@ = 0.

o + (—Ef— —1)9,&1 + (—%— "1)'[’2-041 = 0.
On eliminating Q, by means of equation (5) and neglecting
small quantities, we get

Hence
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Qz.f&.'_ﬁ..Q
e (1)

1~ Yo
whence Qz N o= ﬁ Q’R
This pair of equations implies an infinite discharge at
x =L if(P, - P, ) is zero there, hence the restrictive

clause after equation (4). Nevertheless it is instruc-
tive to use the density distributions (1) and (4) to
calculate the variation of discharge with x. If we
identify ')1 with the mean densityf , and take

n

fa~f z‘k‘sfm-‘sm!f‘ = Sfm % cos%-i":' y

substitution in equation (7) gives‘

Ap
%); ~1 +S’>m,'t‘“ 2t (8)
. -Q"zgy—ﬁ-Am'tan%f:

Curves of diagharge as a function of x are plotted
in Pigure 9 for the typical density ratio Ap = 15. Mex

They show the enormous increase in the volume of water
moving seawards, and the consequent counter drift, in a
similar fashion to the curves deduced by Ketchum (1952)
from a slightly different salinity distribution.

If the cross-sectional areas A, and A, (Fig. 8)
were known, we could immediately ecaldulate thé mean
velocities Ul and U2 as sketched in PFig. 10, but

unfortunately we know only the sum Al + A2 = A as a

geometrical function of x. The available facts are
A1=AR and A2=Oatx=0, and Alez at x = L.

The total depth H 1is known but the height h of the
surface of zero net motion is determined by the bed
roughness %, and the intensity of mixing, which depends

on the tidal streams. Both 51 and U2 are of order UR.

If b 4is known, the mean velocity of upwelling
(wo) is readily determined from equation(6). It is of

order -E..XAF—.URz 0.001 UR’ say 1 mm/sec., which
PMAX.

exceeds the maximum rate of rise and fall of the water
surface due to normal tidal motion, but is an order of
magnitude below the root mean square value of the
vertical fluctuations w.
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TURBULENCE MEASUREMENTS

Complete understanding of an estuary would need
records of the variation of bed contours, water density,
tide, shear stress, time-mean velocities U, V and W,
and the velocity fluctuations u, v and w, over shoals
and channels throughout several tidal cyecles. Civil
engineers take many observations in nature, and in
hydraulic models, to deal with the problems of dredging
away sand bars and stabilising the flood and ebb channels
along the approaches to a port. Oceanographers,
meteorologists, and coastal engineers have amassed con-
siderable data on water density, sediment concentration,
tidal levels and discharges, and the influence of fresh
water flow, wind action, and atmospherie pressure
irregularities on long term averages.

Increasing attention is now being paid to the rapid
fluctuations of velocity and other elements in tidal
streams, as a measure of fluid turbulence, but no
investigator has yet measured simultaneously the velocity
components in the three co-ordinate directions over the
cross-section of a tidal channel. Several investigators
have measured the longitudinal component (U+u) and a few
the vertical fluctuation w at fixed positions.

Prior to, and in the first years of the Second World
War, German oceanographers were obtaining velocity
records from a paddlewheel current meter anchored on the
sea bed. In Norway, about 1947, experiments on bottom
friction were conducted by the University of Bergen,
using semnsitive cup or bucket type current meters
attached to a tripod resting on the sea bed.

In the United Kingdom, about 1948, a team from
Liverpool University made observations of U and u
with Doodson pressure-operated current meters mounted
in a stand or suspended from a boat in the Mersey, an
example of a well-mixed estuary; here the R.M.S, value
of u averaged 0.05 U to 0.10 U, without any clear
trend in the vertical. Further observations, reported
by Bowden and Fairbairn (1956) were carried out by the
Liverpool team in the Irish Sea near the coast of
Anglesey, using electromagnetic flow meters fixed to a
tripod on the sea bed, to record u and w accurately,
and U with less precisiopy; the Reynolds stress - u.w.
varied from 1 to 4 dyne/cm® near the strength of flood
or ebb. The large amount of numerical data on turbulent
velocities resulting from later experiments with the
electro-magnetic flow meters off Anglesey is being
analysed by the DEUCE computer, Measurements at the
same site by Bowden et al. (1959) of the time-mean
velocity U throughout the depth, at half-hourly intervals
through the tidal cycle, using a Doodson meter suspended
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from the research vessel and c¢up-wheel meters on a
tripod for the velocities Just above the bed, indicated
a systematic departure from the logarithmic profile due
to phase differences between the velocities at each
measuring point. However, this effect of tidal inertia
was negligible close to the bed, say for the bottom

2 m. in a total depth of 22 m., and here the logarithmic

law
U= '%*"ln Z

was obeyed, with von Kdrmén's constant K = 0.4 and the
roughness height z, = 0.16 cm., corresponding to

ks = 5 cm. This equivalent sand roughness may be

interpreted as due to ripples, for the bed econsists of
firm sand with smmll fragments of shell. The maximum
value of bed shear stress T, = p.U> was about 8 dyne/cm“.
The eddy viscosity varied in space and time; it was
somewhat higher at mid-depth than nearer the surface or
bed, and tended to maximum values when the tidal stream
was at a maximum, numerical values of Nﬁomentum being of

the order of 270 cn.2/bee. near strength of flood, and
130 cm.“/sec. near strength of ebb, when the depth-mean
velocities were U = 45 cm./sec., and U = 39 om./sec.
respectively.

In the U.S.A., experiments by Lesser (1951) in which
U was measured by four Ekman current meters suspended
from a tripod in the lowest 2 m. of water 45 m. deep
off the coast of California gave logarithmic velocity
profiles with z, = 0.1 cm. over sand which was

hydrodynamically rough, with maximum Ty,= 5 dyne/cm?,
and Zeg= 0,02 cm. over mud which behaveg as a smooth
boundary, with azmaximnm shear stress at the bed of

only 0.2 dyne/cm“. In 1952, workers at Woods Hole
Oceanographic Institution measured U, u, and w (with less
certainty) in the Kennebec estuary. Their turbulence
meter was suspended from the research vessel, s0 Obser-
vations near the water surface may have been distorted

by its proximity. The R.M.S. values of u and w were

of the same order, about 0.05,U. High Reynolds stresses,
of the order 10 to 30 dyne/em®, were associated with
large velocity gradients %].L in this stratified estuary,

=
whichims a well-marked salt wedge below the fast moving
upper layer.

Turbulence measurements have been made for some
years in the rivers and estuaries of the Netherlands.
While working with the Rijkswaterstaat in 1958, the
author was able to measure the longitudinal velocity
simultaneously with temperature and salinity, using an
instrument designed by the Technical Physics Department
(?.N.0.) for the Rijkswaterstaat, which i® being des-
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cribed at the present Conference. Essentially this
turbulence meter is a sensitive impeller, which responds
rapidly to changes 1in water velocity, mounted on the
streamlined body of an Ott current meter weighing

100 kg. It was suspended from a davit on the vessel
“Christiaan Brunings" anchored at different positions

in the Haringvliet. Observations were taken in one

of two ways: either the instrument was steadily lowered
to the bed, then winched to the surface, thus getting
the vertical distribution over a short time interval, as
in Pig. 11, or it was lowered in steps of 1 or 2 m. and
held for 2 minutes at each depth, giving a record of
velocity against time at each depth, from which the ~Z\%
time-mean velocity U and the standard deviation ¢ = )
could be estimated.

Results of the latter method of observation are
plotted in Pig. 12 for flood and Fig. 13 for ebb streams.
It will be noted that while the curves of U(z) are
markedly different due to the net seaward flow near the
surface, the curves of @ (z) are alike, with peak values
of 204 U near the bed, similar to a river or other
open channel with steady flow. The vertical fluctua-
tions were not measured, so the Reynolds stresses could
not be determined. However, if u and w are of the
same order, we can estimate the mixing length }[ from

the formula
LRY ~ o
9Z

except where U(z) passes through a maximum. There

is not sufficient information to deduce the vertical
distribution of [ , but it seems to have a magnitude of
order one tenth of the water depth. Por purposes of
calculation we will assume the mixing length distribdbution
plotted in Pig. 14 is invariable throughout the tidal
period. The curve in Fig. 14 has the equation

Ay = x.z. g:i for H>zZ>h

X'z. = K.z fr h>z>0

where von Kdrmin's constant K = 0.4 and the figure is
plotted for the case h = 0.5 H.

(9)

EQUATIONS OF MOTION

z direction. Neglecting viscosity and the attractions
of sun and moon, the vertical forces on a fluid element
are due to hydrostatic pressure, gravity, and upwelling,
the latter being very small. Application of Newton's
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gecond law gives the vertical equation of motion:-

$OW) +3E +p4 =0 o

An approximate solution, satisfying the boundary condi-
tions p = ppand W = 0 at the free surface (z = H), but

neglecting the vertical density gradient and variations
of W with time, is

P=Fr + f‘ﬁ’(H—'Z -*g‘) (11)

Hence the longitudinal pressure gradient, assuming
constant atmospheric pressure, is

% = P‘X?% ""%’(’"79% (12)

x direction. The longitudinal equation of motion,
cluding friction but neglecting the tide-generating

forces, is
) + % -3 -

On expanding the first term, substituting equation
(12) in the second term, and neglecting the variation
of density with time, equation (13) may be re-arranged
thus

g1 RTIg -2)+ U L o2
w*“"‘s;“"‘*‘"'f)i"%" =Y

If the bed of the estuary is horizontal, the term on

the right hand side represents the gravity <zomponen‘l;.aH
parallel to the water surface. We will write I = —a=
for the water surface slope, downwards from river

to sea. This must equal the density-induced slope along
the estuary, denoted by D, if all motion ceases; then
equation (14) reduces to the simple form

!L-_?_.‘é&-:D
P L s, which can be integrated over the vertical,
assuming %&-—- constant, to give D= under zero

‘=
flow conditions. Substituting D(x) an&rl(x,t) in
equation (14) and changing the second term gives the
working equation for this study:-

) w1 o

1005 1006 10® or 107 107 10°5

(13)
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The order of magnitude of each term in a typical estuary
is quoted. The surface slope I=®D + I_.cos Wt is
balanced by components due to inertia, kfnetic head,
density gradient, and frietion. The case where D = O
and the kinetic head is negligible has been solved.

For laminar oscillations, Lemb (1932, p.622) gives the

solution
al cosh (1+0)-
U = Real +t of {-%2a.
e © " cosh fi+3).

where the boundary layer thickness is §= 2y the

most noteworthy feature being a phase advance near the
bed. Longuet-Higgins (l95§§ has adapted this to find
the mass transport under waves of finite amplitude, so
correcting the frictionless theory of Stokes, and Abbott
has applied this to a tidal estuary. For turbulent
oscillations in water of comnstant depth, theoretical and
experimental investigations by Schénfeld (1948),
MeDowell (1955) and the author show that the velocity
%i:tribution is qualitatively like that predicted by

b.

In order to study the effects of a density gradient
along the estuary, we seek a quasi-steady solution, i.e.
neglect the inertia term in (15) and assume the variation
of kinetic head along the estuary is solely a density

2
effect. As a first approximgtion take %(-g-—) to0 have
a conetant value Fl = %(_%1_) above the surfgce of
zero net motion, and another%constant value F2 == ac(

U2 )
below the surface of zero net motion, at any cross-sectii
X g We will moreover assume that the Froude number

a0 is small, so the remaining part of equation (15) is

" Fead(i-F)—1g 32 =1 a7

This is an ordinary differential equation which can be
integrated for the vertical distribution of shear astress.
Using subscripts 1 and 2 for the layers, the boundary
conditions to be satisfied are T,=0 at z = H, ‘F1== T, at
z = h, whence

;%L.n' =1(1-%) - D.(i—ﬁj -B.(-§) } (18)
and .}%i =10-5)- D4-F) - mﬁm‘z}

At the bed, —faL =T -D~F + (F - F)).f =5, say.

Thus ©p = .g.?;.s and we see that the direction of the
net bed shear stress is very sensitive to the values of
Fl’Fz’ and h, for I=D at slack water. Fig. 10 shows

that Fl and Fa may be of opposite sign in the upper reach.
524
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Writing h =d.H, it will be shown that the fraction ol
is determined by Fl’ F2 and the roughness height Zye

In anticipation, we have plotted Fig. 15 for a cross-
section where o = 0.5, Fy = - 3.6 D, F, = + 4.0 D, and

I =D.(1+ 10.cos wt), at intervals of one lunar hour
(ot = 307). As a second approximation, the discontinuity

in the stress gradient %ﬁ— at z = h could be smoothed by
meking P wvariable in each layer, with Fl = F2 at 2z = h.

Note the asymmetry in Fig. 15 despite the neglect of tidal
inertia.

VELOCITY DISTRIBUTION IN DENSITY CURRENT

By definition, T = ?.LZ,I%-E . -g-g- s except very close

to the bed. Substitution in equation (18) with the
mixing length distributions assumed in equation (9) gives
the velocity gradient in each layer:-

dy _, ygHew) R +Df]
dz K.z

for H>=>h
19)
TRl ¢
and %-l-"z"—=ﬂ:'lin"s ,‘Pkﬁz D H ‘ For l\>z>zo

where P=%I-D-ﬂ2,R=I-D-F1, and S =1 - D =~

(1 -).F, =£.P_, as above. 5 Re-writing (19) with the
dimensiontess el&vation N =g gives

u JReon
J%:ﬁ =+ Ji—kf-"%ﬂlm + const. for Dyt
ana K.Yz = 4 f'"S"'Z.P.Q "D.T'ﬂ (20)
JaH ) n

.dn + const. for o&)rz)ﬁ!

These are standard integrals but their solutions are too
complicated for normal use. However, they may be
simplified to yield the following approximations:-

'r;%- zm.{*b% +r%|3ﬁl} ""J'ls—l'{*hé:_]%f'hﬁa}
and "%, %m{*h%_]_&zﬁa] (21)
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ESTUARINE CURRENTS AND TIDAL STREAMS

Take positive sign when R, S>>0 (mainly ebb stream), and
negative sign for R, S0 (flood). The constants of
integration were fixed by the boundary conditions of zero
velocity near the bed (U2 = 0 at z = z) and continuity

of the velocity profiles at the surface of zero net
motion (U1 =T, at 3 = h), where the velocities are

identically zero in the absence of tidal streams. This
further condition produces the desired connection between

o and Zy» for putting Uz = 0at 2 =h=0l.H gives
ln($4) = P.(q-Z) » ED+EE
writing I = D and neglecting 2z compared to h.

°

D+ X
Hence 1n%=%_§%§;=x, say, whence —z“;f-=&.e .

Since 2z_ 1is small, we can write as a first approximation

o
F,
od =~ TF-J-FF .
S
The resulting velocity profiles are plotted in Fig.

16, taking the previous figures for the "constants",
implying that the roughness elements are such that

-%f-a 0.001. Note the landward motion at slack water,

due to the salinity current. The formulae (21) reduce
to Prandtl's logarithmic veloecity distribution

%
U = iﬁé%fll— .ln-%— near strength of flood and ebb,
0

unless the tidal streams are unusually weak.

Other formulae have been devised by meteorologists
to link departures from the logarithmic wind profile with
temperature inversion (stable) or lapse (unstable)
conditions. Atmospheric stability is characterised
by the Richardson number, being the ratio of buoyancy
force to inertia force. These semi-empirical formulae

may be classified as linear, of type % = m'—K-%’ or
exponential, of type %g = 'léﬁf’ where m and n are

equal to unity in neutral conditions, and in general are
functions of Richardson number.  Thus Rossby and
Montgomery (1935) suggested m = (1 + €.Ri)% where § =
constant, and Deacon %1949) plotted his "profile index"

n, showing a variation from about 0.8 for marked stability
Ri positive; to about 1.2 under unstable conditions

Ri negative). If my, n are not functions of z, integrate
for the velocity profiles:-
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m.U, U ‘z'i—“"'i
U= fh(ﬁb or U= -—%. "‘°1_n
B GERE S0

The first formula merely implies a change in von Karman's
“constant", so that the velocity profile remains
logarithmic, contradicting many observations in density
currents. The second formuls implies a deformation of
the simple logarithmic profile, producing velocities con-
cave to the (In z) axis for unstable conditions (flood
direction) and convex to the (ln 2z) axis for stable con-
ditions éebb direction for tidal current). The author's
formula (21) causes a similar deformation of the
logarithmic plot.

Recent work in the U.S.S.R., based on the idea of a
layer of dynamic turbulence whose thickness d is
defined in terms of the local Richardson number as follows

—('3'—;: -0’ indicates that the eddy viscosity

coefficient for non-neutral conditions in the atmosphere
is simply Ny oo oo =K .Ux.d.Ri, and that a good first

approximation for the velocity distribution is then

U= .?i{ln .;_; + P%} for z>3>z, (22)
where the universal constants are K=0.4 and 20.6,

according to Monin and Obukhov (1954 ). This is
precisely the author's equation (21), if P/& is

identified with -
!Sl..ﬂ
below the surface of zero net motion. It is interesting

that %z0.5 for large slopes, suggesting that d is
of the same order as the water depth H.

EPFECTS OF THE NEGLECTED INERTIA TERM
IN THE DYNAMIC EQUATION

The neglieccted term %% distorts the velocity
profiles, especially near slack water, but it has no net
effect if the tidal range is small compared to the water
depth. Let us seek an inertial correction for the con-
ditions of constant depth and simple harmonic motion.
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Omission of the first three terms in equation (15)
leaves the equation of motion for uniform steady flow of
a fluid with constant density:-

o
P? Rz I
This may be integrated twice, assuming that mixing length
ﬁ-x z.(1 - ﬁ)%, to give the logarithmic velocity profile

U(z) _ﬂjl-l h.ﬁ. Hence the simplest approximation
to the velocity distribution in a tidal stream, where
surface slope I .co8 wt, is

Ui(z t) = m In&. ’t cos wt
“@'@-h%.cosmt

The first term of the Pourier expansion has been taken,

introducing the factor (%"l) = 1.08. Note that it is

impossible to have simple harmonic motion of both surface
slope and tidal stream when the flow is turbulent. Also
it is impossible to have S.H.M. of both tide and stream,
even in a rectangular channel, so to this extent all
solutions in this paper must be regarded as approximate.

Retention of the first term in equation (15) gives
L3014 2F _ g

ﬁ' 3t Pﬂ/ Az
A trial solution is U, (z,t) = Uo.cos(wt —@), where U,
and ¢ are functions of z. The velocity amplitude U,
is well approximated by a logarithmic expression, so take

U = (g.H.Io)
o E
to be a linear function of g, although observations

(e.g. Proudman, 1953, p.313%, at Smith's Knoll) indicate
that ¢ (z) is more nearly parabolic. If ¢o is the phase

difference between velocities at surface and bed, we make
the simple assumption that ¢= ﬁ.%, and we get the order

. 1In2 . The phase lag ¢ will be assumed

of magnitude of ¢° from the value of @, = phase

difference between mean velocity and bed shear stress or
velocity gradient, as follows. Schénfeld (1948) applied
the mixing le%gth theory to compute the time difference
t between " His result, for a rough bed, is

= (2-’?2-—) where f = mean acceleration during reversal
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of tidal stream. If the motion is simple harmonic,
£=3alt"-=m.ﬂ°, whence the phase difference is

Rw 1
¢é =w.t Toﬂ radians, or %. = 3460 sz.“o degrees,
since u--?}.l'-'."-.

Just as lamb's parameter -s- governs the phase lags

in laminar oscillations, it may be argued that a similar
expression with § defined by the eddy viscosity rather
than the molecular viscosity will partly control the
behaviour of turbulent flui und ing simple harmonic
motion. By analogy with , we find the

H. gw:
dimensionless ratio OC H.Jw

since eddy viscosity 1is proportional to U » Which is

proportional to ﬁ' s in faet U_ 5: T 4fC =

Chezy coefficient for ateady tlow, and we _assume that
tidal flow depends on the maximum value ’Uo of the
mean velocity in a vertical. Seeing this unique com-
bination of water depth H, tidal period T, and mean
velocity amplitude U, the author (1959) has defined

the LAMB »~uMBER as follows:-

£ ’ 44 14 H | (23)

The factor 44714 is included to facilitate calculations
on natural tidal oscillations, where the lunar semi-
diurnal period is 44714 sec., and to produce conveniently
sized numbers. Por example, the M2 stream in a channel

of depth 10 m. with maximum velocity 2 m./sec. has J = 2.24.
With this definition, Schdénfeld's formula for the phase
difference over a rough bed reduces to the simple
expressions:-

B, = 1.22 [ aegroes (24)

Substitution in the above example gives ¢d 2.7°.

Hence the phase difference between surtace and bed
velocities (%) is of the order of 30

The effect of the inertia term i 1% is to add a
small velocity AU to the steady flow distribution.
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|
(=]

Thus AU (z,t) = U, - U;

u,. {cos(wt ~-P) - (%E)%.coa wt}
%20 _.sin -g-. sin (wt — %) , neglecting [(%E)%- ]]

= U .sin ¢ sin wt, if ¢ is small.

Hence we must apply the inertial correction (25) to
quasi-steady velocity profiles:-

AU=1U, . sing. sinwt (25)

This correction has been applied to the velocities
in (21) to estimate the velocity distributions in the
presence of both density and inertia effects, using the

linear phase distribution ¢=§.¢° with ¢o = 3°, and

the previously assumed values of slope components and
roughness ratio, giving Nikuradse ks a5 33 cm. with

H = 10 m., corresponding to a tidal channel with large
sand ripples on the bed. Fig. 17 shows the resulting
profiles. Although the velocity gradients near the

bed, hence t%, are increased after reversal of the tidal

stream, they are correspondingly decreased before reversal,
and the maximum value of to appears to be the same as

that obtained when inertia is negleoted, with this
"glowly varied" flow; only at very short tidal periods,
a8 in hydraulic models, 1s there a measurable increase
in the maximum bed shear stress. However, the phase
difference between velocity and water surface slope is
by no means negligible, so linear superposition of the
quasi-steady and inertial solutions of the dynamic
equation cannot produce very reliable results. But here
we are Interested in the general behaviour of estuarine
water, so further refinement in the correction AU will
not be attempted.

Before leaving this subject, it should be emphasized
that the phase differences inside the fluid, although
small, may be important for the proper operation of tidal
models with movable bed material, since grains set in
motion relatively early in the tidal cycle may continue
moving with the main stream even when the bed shear stress
has fallen below the value required to initiate movement.
For reproduction of inertia effects the Lamb number should
be the same in model and prototype (unless the frietion
coefficient differs), calling for models without vertical
exaggeration if the Froude scale law is followed.
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EFFECIS OF FINITE TIDAL RANGE

If the tidal range is of the same order as the water
depth, as occurs in many shallow estuaries, then the
second term in equation (15) cannot be wholly attributed
to the salinity circulation and it may change sign along
an estuary due to changes in bottom topography
(contractions and expansions) as well as the water surface
profile varying in time and space. We must therefore
apply a further correction to the velocity distributions
at any cross-section.

Longuet-Higgins (1953) showed that at elevation

o= (2%9 above a smooth bed, there was a net velocity
in the direction of wave propagation, equal to

a2,
i. w",p, X i‘ L .
47c, sioh™ = 2 W) %
with "long" progressive waves, where A= amplitude, and
¢ = celerity of wave. Experiments indicate that the

net forward velocity over a rough bed is lower than this
figure. The mase transport under a standing wave is
smaller and distributed differently in the vertical.

The case of a tidal estuary, which may be treated as a
channel closed at one end and open to the sea at the
other end, involves the combination of an incident wave
whose amplitude decreases exponentially in the direction
of propagation (from open to closed end), and a reflected
wave whose amplitude decreases exponentially from the
clogsed end to the sea. A general solution is very
difficult, but the direction of net movement in a tidal
estuary may be inferred from available data on the
variation of tidal elevations and mean velocities along
the estuary.

Abbott (1960) has suggested the criterion i%(ﬂo.ee)

= 0 for finding the positions along a tidal estuary
where sediment collects, so explaining the Mud Reaches
in the Thames estuary. Here ﬂﬁ = maximum velocity of

tidal stream, and @ = phase difference between tide and
stream.
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NOTATION

area of cross-section
emplitude of long wave
breadth of surface of zero net motion
Chézy coefficient of friction
concentration of salt by weigh
o celerity of long wave, = (g.H)”? in the absence of
friction
slope component due to longitudinal density gradient,

H D
g
thickness of turbulent boundary layer in atmosphere

base of natural logarithms, = 2.718
slope component due to }ongitudinal velocity

gradient, = »<=

acceleration during reversal of tidal stream
acceleration due to gravity
water depth
elevation above bed of surface of zero net motion
surface slope, taken positive gownwards to ses
imaginary number, defined by i* = -1
number defined in text
8 sand grein diameter in Nikuradse's experiments
Lamb number
length of estuary
mixing length
s numbers defined in text
eddy coefficient
slope component defined in text
pressure
discharge = volume per unit time

U ooaod x>

e

Og g ZH ISR 1 - B ik H
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Richardson number

slope components defined in text

tidal period

time

time-mean and fluctuating velocities, respectively,
in x-direction

time-mean and fluctuating velocities, respectively,
in y-direction

time-mean and fluctuating velocities, respectively,
in g-direction

fluid displacement in x-~direction

longitudinal distance, positive from river to sea

transverse distance

vertical distance, positive upwards

roughness height

dimensionless elevation'%-of surface of zero net
motion

Obukhov's constant = 0.6

ratio of eddy coefficients of viscosity and diffusion

thickness of laminar boundary layer in oscillating

flow, = (-2%)’é

"constant” introduced by _Rossby and Montgomery
dimensionless elevation i above bed

phase difference between tide and tidal stream
von Karmén's constant = 0.4

kinematic viscosity of fluid

density of fluid

standard déviation of turbulent velocity u
shear stress at elevation 2z

shear stress at bed

phase lag of velocity on

angular velocity of tidal stream =<
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