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INTRODUCTION 

Fresh water spreading out from the mouth of a river 
as it enters a salt sea may preserve its identity for a 
considerable distance on the surface if wind-generated 
waves, longshore currents and tidal streams are capable 
of producing only weak mixing.  Fig. 1 shows the three- 
dimensional shape of a fresh-water tongue overlying more 
dense salt water, derived by Takano (1954) on the 
assumption of constant eddy viscosity and constant 
density in the fresh water layer, below which the density 
increases according to an assumed law, making an asymptotic 
approach to the density of salt water.  Takano's model 
is thus a water jet entraining salt from around and below 
it. 

Salt or brackish water may penetrate along the deep 
channels of an estuary in the shape of a wedge comple- 
mentary to the fresh water tongue, the salt wedge 
retreating seawards as heavy rainfall increases the river 
discharge, and advancing in dry weather intervals.  Tidal 
streams cause a regular oscillation of both fresh and 
braok water in flood and ebb directions but the seasonal 
movements of the sloping boundary between fresh and salt 
water may still be important in low-lying delta regions. 
Strong tidal streams lead to intense mixing, when neither 
a fresh water tongue nor a salt wedge can be distinguished, 
but the isohalines (salinity contours) preserve the 
general wedge pattern - see Figs. 3 to 6. 

In the upper reaches of an estuary it is possible to 
study the effect of the tidal motion by treating it as a 
simple harmonic perturbation of the uni-directional river 
flow.  Even in the middle portion of the estuary where 
there is reversal of the horizontal motion, one may seek 
a "quasi steady" solution for the net effect (seaward 
movement of fresh water) while allowing for the increased 
turbulence due to the tidal action.  At the seaward end 
of the estuary there is little deviation from the 
astronomical tidal rhythm, so the problem reduces to 
simple harmonic oscillations of salt water.  Higher 
harmonics may be introduced as an extension of the simple 
solution.  For a first approximation it is sufficient to 
consider flow in the longitudinal vertical plane, to 
assume that the pressure distribution is hydrostatic as 
in long wave theory, and even to neglect inertia terms 
when investigating net effects. 
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RgJ.   Tongue of fresh water in shape 

of hyperbolic paraboloid 
(after TakanoJ. 

MlYE 

Origin 
ofx 

EJSLL- Longitudinal section of estuary, to exaggerated 

vertical  scale, showing the circulation pattern. 
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DENSITY DISTRIBUTION 

For engineering purposes we may regard the sea as 
an infinite reservoir of salt water, its edges being 
diluted by fresh river water and rain while the balance 
is maintained by evaporation from its surface to the 
atmosphere.  We postulate a slow current of seawater 
landwards along the bed, its density being decreased by 
vertical diffusion and mixing, and a surface flow sea- 
wards of fresh water being gradually rendered brackish 
by salt rising from below.  This circulation is illustrated 
in Fig. 2 by full-drawn streamlines, the broken lines 
being profiles of longitudinal velocity.  The ehain 
dotted line indicates the surface of zero net motion in 
the longitudinal direction, and is obviously a place 
where high shear stresses may be expected, even exceeding 
the bed shear stress.  This is a valid picture even 
when tidal motion is superimposed, although then the 
surface of zero net motion must be defined by averaging 
over a tidal period;  it has a real existence only near 
the instants of "slack water".  O'Brien (1952) suggested 
that landward velocity near bed is approximately C.7H7ST, 
where C = Chezy coefficient and D =•&•§£ 

In many estuaries it is observed that the average 
salinity over a cross-section, and hence the average 
density if temperature differences can be neglected, 
increases from river to sea in nearly linear fashion in 
the middle reaches (Fig. 7), the rate of increase being 
smaller near the river (x = 0) and the sea (x * I). 
This linear increase is related to the_fact that the 
maximum velocity of the tidal stream U  scarcely 
changes along the estuary* so the intensity of mixing 

a small fraction of the length L"      For example, 
if ff = 1.4 m/sec. or approximately 3 knots, and the 
angular velocity of the lunar semi-diurnal tidal stream 
is w = 0.00014 rad/sec, then X = 10 km, whereas 
1 s=w 80 km for a typical estuary. 

Fig. 7 shows the average density distributions at 
slack water after high water (change from flood to ebb), 
and slack water after low water (change from ebb to 
flood), on the assumption that 

f  = p, + Ap. $lnz JLg-       (l) 

* Indeed, Pillsbury (1939) inferred from the Delaware, 
and Otter and Day (I960) showed more rigorously with 
application to the Thames, that U is constant in a 
long estuary whose breadth increases exponentially with 
x. 
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where Po = density of fresh water entering from river 
and Ap * density difference between sea and fresh 
water.  This density distribution fits the Thames data 
quoted by Inglis and Allen (1957), but other analytical 
curves such as the Gaussian integral and the hyperbolic 
tangent would also be suitable. 

There is also an increase of density from surface to 
bed, which is nearly linear in a well-mixed estuary, as 
indicated by the isohalines in Pigs. 3 and 5.  Unless 
there is a deep channel through tidal flats there is 
little variation of density in the transverse direction. 
The effect of the Earth's rotation is to tilt the 
isohalines (Pig. 4) much more than the water surface. 
Assuming longitudinal translation of the isohalines 
without rotation, we now seek for a suitable law descri- 
bing variation of the vertical density difference along 
the estuary. 

Defining the salt concentration e » Itss of waier 

at a point, the density is P = (l+c).p, and the vertioal 

flux or transfer of salt per unit area is cp37 » "P^salt '^*~ 

where Hg -^ is the vertical exchange coefficient for 

salt, or the eddy diffusion coefficient.  The Beynolds 

shear stress, or vertical flux of momentum, is similarly 

r- -j^»f-NM0mentum^y-' «* Momentum is often 

called the eddy viscosity coefficient.  Here U and 

V are the time-mean velocities, u and w the velocity 

fluctuations, in the longitudinal and vertical directions 

respectively.  Jacobsen's method of averaging over a 

tidal cycle then yields the equations 

Extensive measurements have shown that the eddy 
coefficients are unequal, their ratio BM0Men*«n 

being a function of the local Richardson number 

Thus Taylor (1931) showed that Y • Ri if the work doi 
by fluid turbulence is wholly devoted to mixing (i.e. 
increasing potential energy of variable density fluid), 
and Y > Ri if some energy is dissipated by fluid viscosity. 
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With specified velocity and density distributions, Taylor 
showed that stable internal waves are possible when 
Ri > 0.25, but no waves can exist if Hi <. 0.25. 
Other workers have derived different stability criteria. 

Let us assume that the vertical distributions of 
^Momentum and HSalt are similar» heace tae ratio f 
does not vary with z.  Take NMomeiltum - K.U*.z.(l-§) 

as in a river, so ^salt * §'^*'z«(l**5)»  ^n® ratio Y 
has typical values 2 to 5 in a well-mixed estuary, and 20 
to 50 in a stably stratified estuary with a salt wedge. 

Now ^x"=B^-*-T§-if *ke density difference Uexween 
bed (z = 0) and surface (z -  H) is SP , a function of x. 
Also ^-.^-aj^-ai^.sin^- from (1).  The 
advection term UQ£- in (2) obviously changes sign in 
the vertical.  To get an idea of its effect, assume zero 
net velocity at mid-depth and surface velocity TJH equal 
and opposite to velocity near the bed, thus U « UHJ(2|>-1). 
Substitution in equation (2) givest.-.,      , „., 

whence     c  wVu \L »  , ««• (4) 

V-itt***- 
Hence the vertical density difference is greatest in the 
middle reaches.  It is zero at the river but not quite 
zero at the seaward end of the estuary, so that (4j is 
not reliable when x—*»L. 

If P, « mean density of water above surface of zero li net motibd and P? « mean density of water below surface 
of zero net motion, at section x, then the density differ- 
ence between the two layers is p2 — p, ^55$ .&>. 

Typical values of the longitudinal and vertical den- 
sities are    * 

^"^toOO "^  o* w"to00 ln a well~mixed estuary. 

MEAN VELOCITIES OF CIRCULATION 

The equation of continuity for quasi-steady condi- 
tions states that the volume of water between two cross- 
sections is constant, neglecting precipitation, evaporation, 
and tidal motion.  Referring to Pig. 8, let 
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QR       » discharge of fresh water from river 

Qn = A-, .U, = flow above surface of zero net motion] at 
x V sectioi 

Q2 = A2.U2 
=  " *eloW   M   "  "   "   "  J x 

Discharge and velocity are measured positive in the 
direction of x increasing, i.e. from river to sea. 
Let h = height above bed and b = breadth of surface of 
zero net motion, through which there is an upward velocity 
W  meaned across the breadth, at section x. 

Between 0 and x the continuity requirement gives 

Qx • Q2 = QR (5) 

Considering the space between sections x and (x + Sx) 
above the surface of zero net motion in Fig. 8, the water . 
entering per unit time is Q1 + W.b.Sx, and the water 

leaving per unit time is Q-, + •{«* • ooc , whence 

^ = 1>.W.    . 
OX V      (6) } Similarly, _ J^LL   = Ij.tyfo 

Denoting salt concentrations by the same subscripts 

as densities, c »0» c. «-P--l ,C,»£-1, there must be no 

change in the mass of salt in any part of the estuary, 
and by definition, the mass of salt is c.(Mass of water), 

« Ve.o.Q.St = constant, therefore 21c.p.Q » 0.  More 

precisely, I  c.P.Gt.<Jt= constant.  This is really a 

statement of Knudsen's hydrographic theorem. 

Turning again to Fig. 8, we can draw up the salt 
balance between sections 0 and x.  Application of the 
above theorem gives   ^ -        -        ^ 

On eliminating Q2 by means of equation (5) and neglecting 

small quantities, we get 
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p-   ft (7) 

whence      Q^ » - f|  1° • Q,R 

This pair of equations implies an infinite discharge at 
x = L if fPp - p,N is zero there, hence the restrictive 

clause after equation (4).  Nevertheless it is instruc- 
tive to use the density distributions (l) and (4) to 
calculate the variation of discharge with x.  If we 
identify pi with the mean density p , and take 

fc-f. *iW8in¥- - W'ft-"'* ' 
substitution in equation (7) gives 

& * l *&*• ft 
and 

a* &rf  • tan TT.3C } IT     I      (8) 

Curves of discharge 'as a function of x are clotted 
in Figure 9 for the typical density ratio Ap * ^'^Max 
They show the enormous increase in the volume of water 
moving seawards, and the consequent counter drift, in a 
similar fashion to the curves deduced by Ketchum (1952) 
from a slightly different salinity distribution. 

If the cross-sectional areas A, and A? (Fig. 8) 
were known, we could immediately calculate the mean 
velocities V^  and I?2 as sketched in Fig. 10, but 

unfortunately we know only the sum A, + Ap » A as a 
geometrical function of x.  The available facts are 
A, * AR and A„ = 0 at x = 0, and A, «A« at x = L. 

The total depth H is known but the height h of the 
surface of zero net motion is determined by the bed 
roughness zQ    and the intensity of mixing, which depends 
on the tidal streams.  Both if, and Ug are of order UR. 

If b is known, the mean velocity of upwelling 
(¥ ) is readily determined from equation (6).  It is of 

order Ji...—£s£—.\JL«5 0.001 UR, say 1 mm/sec, which 

exceeds the maximum rate of rise and fall of the water 
surface due to normal tidal motion, but is an order of 
magnitude below the root mean square value of the 
vertical fluctuations w. 
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TURBULENCE MEASUREMENTS 

Complete understanding of an estuary would need 
records of the variation of bed contours, water density, 
tide, shear stress, time-mean velocities U, V and W, 
and the velocity fluctuations u, v and w, over shoals 
and channels throughout several tidal cycles.  Civil 
engineers take many observations in nature, and in 
hydraulic models, to deal with the problems of dredging 
away sand bars and stabilising the flood and ebb channels 
along the approaches to a port.  Oceanographers, 
meteorologists, and coastal engineers have amassed con- 
siderable data on water density, sediment concentration, 
tidal levels and discharges, and the influence of fresh 
water flow, wind action, and atmospheric pressure 
irregularities on long term averages. 

Increasing attention is now being paid to the rapid 
fluctuations of velocity and other elements in tidal 
streams, as a measure of fluid turbulence, but no 
investigator has yet measured simultaneously the velocity 
components in the three co-ordinate directions over the 
cross-section of a tidal channel.  Several investigators 
have measured the longitudinal component (U+u) and a few 
the vertical fluctuation w at fixed positions. 

Prior to, and in the first years of the Second World 
War, German oceanographers were obtaining velocity 
records from a paddlewheel current meter anchored on the 
sea bed.  In Norway, about 1947, experiments on bottom 
friction were conducted by the University of Bergen, 
using sensitive cup or bucket type current meters 
attached to a tripod resting on the sea bed. 

In the United Kingdom, about 1948, a team from 
Liverpool University made observations of U and u 
with Doodson pressure-operated current meters mounted 
in a stand or suspended from a boat in the Mersey, an 
example of a well-mixed estuary; here the R.M.S. value 
of u averaged 0.05 U to 0.10 U, without any clear 
trend in the vertical.  Further observations, reported 
by Bowden and Pairbairn (1956) were carried out by the 
Liverpool team in the Irish Sea near the coast of 
Anglesey, using electromagnetic flow meters fixed to a 
tripod on the sea bed, to record u and w accurately, 
and U with less precision; the Reynolds stress -  u.w. 
varied from 1 to 4 dyne/cmr near the strength of flood 
or ebb.  The large amount of numerical data on turbulent 
velocities resulting from later experiments with the 
electro-magnetic flow meters off Anglesey is being 
analysed by the DEUCE computer.  Measurements at the 
same site by Bowden et al. (1959) of the time-mean 
velocity U throughout the depth, at half-hourly intervals 
through the tidal cycle, using a Doodson meter suspended 
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from the research vessel and cup-wheel meters on a 
tripod for the velocities just above the bed, indicated 
a systematic departure from the logarithmic profile due 
to phase differences between the velocities at each 
measuring point.  However, this effect of tidal inertia 
was negligible close to the bed, say for the bottom 
2m. in a total depth of 22 m., and here the logarithmic 

U = % In * 
was obeyed, with von Karman's constant K » 0.4 and the 
roughness height z = 0.16 cm., corresponding to 
k_ G&  5 cm.  This equivalent sand roughness may be 

interpreted as due to ripples, for the bed consists of 
firm sand with small fragments of shell.  The maximum » 
value of bed shear stress "C0 =* P-VL 

w*s about 8 dyne/cm . 
The eddy viscosity varied in space and time; it was 
somewhat higher at mid-depth than nearer the surface or 
bed, and tended to maximum values when the tidal stream 
was at a maximum, numerical values of ^Momentum ^>einS °£ 
the order of 270 cm. /sec. near strength of flood, and 
130 cm./sec. near strength of ebb, when the depth-mean 
velocities were tf » 45 cm./sec, and U* « 39 cm./sec. 
respectively. 

In the U.S.A., experiments by Lesser (1951) in which 
U was measured by four Ekman current meters suspended 
from a tripod in the lowest 2m. of water 45 m. deep 
off the coast of California gave logarithmic velocity 
profiles with z = 0.1 cm. over sand which was 

hydrodynamically rough, with maximum XQ *» 5 dyne/cm., 
and SB© = 0.02 cm. over mud which behaved as a smooth 
boundary, with a?maximum shear stress at the bed of 
only 0.2 dyne/cm .  In 1952, workers at Woods Hole 
Oceanographic Institution measured U, u, and w (with less 
certainty) in the Kennebec estuary.  Their turbulenee 
meter was suspended from the research vessel, so obser- 
vations near the water surface may have been distorted 
by its proximity.  The R.M.S. values of u and w were 
of the same order, about 0.052U.  High Reynolds stresses, 
of the order 10 to 30 dyne/cmr, were associated with 
large velocity gradients 3JL in this stratified estuary, 

which has a well-marked salt wedge below the fast moving 
upper layer. 

Turbulence measurements have been made for some 
years in the rivers and estuaries of the Netherlands. 
While working with the fiijkswaterstaat in 1958, the 
author was able to measure the longitudinal velocity 
simultaneously with temperature and salinity, using an 
instrument designed by the Technical Physics Department 
(T.N.O.) for the Hijkswaterstaat, which is being des- 
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cribed at the present Conference.  Essentially this 
turbulence meter is a sensitive impeller, which responds 
rapidly to changes in water velocity, mounted on the 
streamlined body of an Ott current meter weighing 
100 kg.  It was suspended from a davit on the vessel 
"Christiaan BruningsH anchored at different positions 
in the Haringvliet.  Observations were taken in one 
of two ways: either the instrument was steadily lowered 
to the bed, then winched to the surface, thus getting 
the vertical distribution over a short time interval, as 
in Pig. 11, or it was lowered in steps of 1 or 2 m. and 
held for 2 Minutes at each depth, giving a record of 
velocity against time at each depth, from which the i—x^u. 
time-mean velocity U and the standard deviation <rs=(u)n 

could be estimated. 

Results of the latter method of observation are 
plotted in Pig. 12 for flood and Pig. 13 for ebb streams. 
It will be noted that while the curves of U(z) are 
markedly different due to the net seaward flow near the 
surfaoe, the curves of cr(z) are alike, with peak values 
of 0*«0»i TJ near the bed, similar to a river or other 
open channel with steady flow.  The vertical fluctua- 
tions were not measured, so the Reynolds stresses could 
not be determined.  However, if u and w are of the 
same order, we can estimate the mixing length P from 
the formula        ft 

,      *•« * v 

except where U(z) passes through a maximum.  There 
is not sufficient information to deduce the vertical 
distribution of JL , but it seems to have a magnitude of 
order one tenth of the water depth.  Por purposes of 
calculation we will assume the mixing length distribution 
plotted in Pig. 14 is invariable throughout the tidal 
period.  The curve in Pig. 14- has the equation 

(9) 

where von Karman's constant K « 0.4 and the figure is 
plotted for the case h » 0.5 H. 

EQUATIONS OP MOTIOK 

z direction.  Neglecting viscosity and the attractions 
of sun and moon, the vertical forces on a fluid element 
are due to hydrostatic pressure, gravity, and upwelling, 
the latter being very small.  Application of Newton's 
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second law gives the vertical equation of motion:- 

+ 3£- + t> 4t - o M-w) ? x + ff -0     (10) 

An approximate solution, satisfying the boundary condi- 
tions p s Pxand W = 0 at the free surfaee (z = H), but 
neglecting the vertical density gradient and variations 
of W with time, is 

Hence the longitudinal pressure gradient, assuming 
constant atmospheric pressure, is 

^~n^+tM^- (12) 

x direction.  The longitudinal equation of motion, 
including friction but neglecting the tide-generating 
forces, is 

On expanding the first term, substituting equation 
(12) in the second term, and neglecting the variation 
of density with time, equation (13) may be re-arranged 
thus 

3f+u.'£+4^£-4.'£-^* (14) 

If the bed of the estuary is horizontal, the term on 
the right hand side represents the gravity component^• 
parallel to the water surface.  We will write I • —«g 
for the water surface slope, downwards from river 
to sea.  This must equal the density-induced slope along 
the estuary, denoted by D, if all motion ceases;  then 
equation (14) reduces to the simple form 

1 t      , which can be integrated over the vertical, 
assuming 4-^2|L=* constant, to give {) K-H.."s£> under zero 
flow conditions.  Substituting D(x) and>I(x,t) in 
equation (14) and changing the second term gives the 
working equation for this study:- 

10""5  10~6   10""6 or 10"*7   10~5  10"5 

(15) 
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The order of magnitude of each term in a typical estuary 
is quoted.  The surfaee slope I«#D + I .coswt is 
balanced by components due to inertia, kinetic head, 
density gradient, and friction.  She case where D = 0 
and the kinetic head is negligible has been solved. 
For laminar oscillations, Lamb (1932, p.622) gives the 
solution \ H 2 

v . B.al p«t or AHWt -fte** (16) 

where the boundary layer thickness is -&=./Ax. , the 

most noteworthy feature being a phase advance near the 
bed.  Longuet-Higgins (19537 has adapted this to find 
the mass transport under waves of finite amplitude, so 
correcting the frictionless theory of Stokes, and Abbott 
has applied this to a tidal estuary.  For turbulent 
oscillations in water of constant depth, theoretical and 
experimental investigations by Schdnfeld (1948), 
McDowell (1955) and the author show that the velocity 
distribution is qualitatively like that predicted by 
Lamb. 

In order to study the effects of a density gradient 
along the estuary, we seek a quasi-steady solution, i.e. 
neglect the inertia term in (15) and assume the variation 
of kinetic head along the estuary is solely a density 

effect.  As a first approximation take ^-("VS")*0 nave 

a constant value F, = ^LLHl_J above the surface of .   t v 
zero net motion, and another^constant value F2 » ^5L.f jC j 
below the surface of zero net motion, at any cross-section 
x. „We will moreover assume that the Froude number 
U |r is small, so the remaining part of equation (15) is 

This is an ordinary differential equation which can be 
integrated for the vertical distribution of shear stress. 
Using subscripts 1 and 2 for the layers, the boundary 
conditions to be satisfied are X^** 0 at z = H, U.• T2 at 
z = h, whence x 

and 
^-tfl-tf-ftMtf-«•(!-*)     «  (18) } 

At the bed, A^ *» I - D - F^^ + (^ - P2^
,"H"!B S» say* 

Thus t(=p .g.H.S and we see that the direction of the 
net bed shear stress is very sensitive to the values of 
F,,F2, and h, for I»D at slack water.  Fig. 10 shows 

that F, and F« may be of opposite sign in the upper reach. 
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Writing h = oL.H, it will be shown that the fraction eC 
is determined by F,, F„ and tne roughness height z . 
In anticipation, we have plotted Fig. 15 for a cross- 
section where ot = 0.5, ?, « - J,6 D, Fg * 

+ *.0 D, and 
I = D.(1 + 10.cos cot), at intervals of one lunar hour 
(<*»t = 30 ).  As a second approximation, the discontinuity 

in the stress gradient 4£- at z = h could he smoothed toy 

making F variable in each layer, with F, = Fp at z = h. 

Note the asymmetry in Fig. 15 despite the neglect of tidal 
inertia. 

VELOCITY DISTRIBUTION IN DENSITY CURRENT 

By definition, t = f»Jt *jfar fz ' exceP't very ol°se 
to the bed.  Substitution in equation (18) with the 
mixing length distributions assumed in equation (9) gives 
the velocity gradient in each layer:- 

g.tVt»fr*i;*»w     ^^ 
m 

and ^..^^H-IS-^-t -P'frl fr, k>z>J 

where P « %I  - D - #F2, R * I - D - Fx, and S = I - D - 
(1 -cO.F, -oC.F9, as above.  Re-writing (19) with the 
dimensioniess elevation H = # gives 

and   K^.ifVU^p.n-Dta*! .(20) 

These are standard integrals but their solutions are too 
complicated for normal use.  However, they may be 
simplified to yield the following approximations:- 

"* A **M.I+\*&-£,-2&.'\ (21) 
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Take positive sign when R, S>0 (mainly ebb stream), and 
negative sign for R, S<0 (flood).  The constants of 
integration were fixed by the boundary conditions of zero 
velocity near the bed (Ug « 0 at z • zQ)  and continuity 
of the velocity profiles at the surface of zero net 
motion (U, * Ug at z » h), where the velocities are 

identically zero in the absence of tidal streams.  This 
further condition produces the desired connection between 
OC and z0, for putting B^ = 0 at z » h = d.H gives 

writing I » D and neglecting z  compared to h. 

Hence tn(4p-) = -r^ %**» say» waenoe %•-*••• 

Since z  is small, we can write as a first approximation 

The resulting velocity profiles are plotted in Fig. 
16, taking the previous figures for the "constants", 
implying that the roughness elements are such that 
-^f- = 0.001.  Note the landward motion at slack water, 

due to the salinity current.  The formulae (21) reduce 
to Prandtl's logarithmic velocity distribution 

U = (ff****1)  .in .2- near strength of flood and ebb, 
K        o 

unless the tidal streams are unusually weak. 

Other formulae have been devised by meteorologists 
to link departures from the logarithmic wind profile with 
temperature inversion (stable) or lapse (unstable) 
conditions.  Atmospheric stability is characterised 
by the Richardson number, being the ratio of buoyancy 
force to inertia force.  These semi-empirical formulae 
may be classified as linear, of type ^ - m._^.> 0P 

exponential, of type 4~ = •*g, where m and n are 

equal to unity in neutral conditions, and in general are 
functions of Richardson number. • Thus Rossby and 
Montgomery (1935) suggested m « (1 + £.Ri)H where £ = 
constant, and Deacon (194-9) plotted his "profile index" 
n, showing a variation from about 0.8 for marked stability 
(Ri positive) to about 1.2 under unstable conditions 
(Hi negative).  If m, n are not functions of z, integrate 
for the velocity profiles:- 
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or p,u> » -1 K     l-n 

-•*•{>»*+^^} 
The first formula merely implies a change in von Karman's 
"constant", so that the velocity profile remains 
logarithmic, contradicting many observations in density 
currents.  The second formula implies a deformation of 
the simple logarithmic profile, producing velocities con- 
cave to the (In z) axis for unstable conditions (flood 
direction) and convex to the (In z) axis for stable con- 
ditions (ebb direction for tidal current).  The author's 
formula (21) causes a similar deformation of the 
logarithmic plot. 

Recent work in the U.S.S.R., based on the idea of a 
layer of dynamic turbulence whose thickness d is 
defined in terms of the local Richardson number as follows 

d \  *«JL-»»o *  indica*es t^181* 'tne eddy viscosity 
coefficient for non-neutral conditions in the atmosphere 
is simply %omen-tum ^ 

K 'U^.d.Ri, and that a good first 
approximation for the velocity distribution is then 

U-irfln^   ^p-fl  for z2>x*  (22) 

where the universal constants are Ksw0.4 and Ass0.6, r 
according to Monin and Obukhov (1954). This is 
precisely the author's equation (21), if fl/i is 
identified with    -P P* 

below the surface of zero net motion.  It is interesting 

that "j5-«0.5 for large slopes, suggesting that d is 
of the same order as the water depth H. 

EFFECTS OF THE NEGLECTED INERTIA TERM 
IN THE DYNAMIC EQUATION 

The neglected term 4.^ distorts the velocity 

profiles, especially near slack water, but it has no net 
effect if the tidal range is small compared to the water 
depth. Let us seek an inertial correction for the con- 
ditions of constant depth and simple harmonic motion. 
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Omission of the first three terms in equation (15) 
leaves the equation of motion for uniform steady flow of 
a fluid with constant density:- 

1   It     _ T 

This may he integrated twice, assuming that mixing length 

jt = K .z.(l - §) » "to give the logarithmic velocity profile 

U(z) = I|2LL..^n •£ •   Hence the simplest approximation 
to the velocity distribution in a tidal stream, where 
surface slope I « I .cos wt, is 

^.jap-.la^.cwa 
The first term of the Fourier expansion has been taken, 

introducing the factor (•?£•) =s 1.08.  Note that it is 

impossible to have simple harmonic motion of both surface 
slope and tidal stream when the flow is turbulent.  Also 
it is impossible to have S.H.M. of both tide and stream, 
even in a rectangular channel, so to this extent all 
solutions in this paper must be regarded as approximate. 

Retention of the first term in equation (15) gives 

11U 1_ 2JL « T 
A trial solution is U2(z,t) = UQ. cos (art — <(>),  where UQ 
and 6   are functions of z.  The velocity amplitude UQ 
is well approximated by a logarithmic expression, so take 
u
0 * ^g

,HtI
0)  . in | .  The phase lag f  will be assumed 

K O 
to be a linear function of z, although observations 
(e.g. Proudman, 1953, p.313, at Smith's Knoll) indicate 
that <6(z) is more nearly parabolic.  If <p       is the phase 
difference between velocities at surface and bed, we make 

the simple assumption that fl5=-£..aS, and we get the order 
H 

of magnitude of <f>      from the value of 0 . = phase 

difference between mean velocity and bed shear stress or 
velocity gradient, as follows.  Schflnfeld (1948) applied 
the mixing length theory to compute the time difference 
t, between u and tL.  His result, for a rough bed, is 

-5f  p  IT 1/ " 

"td = (~?—) » where f = mean acceleration during reversal 
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of ti£al stream.  If the motion is simple harmonic, 
f 5=3L!I = w.fl., whence the phase difference is 

6   **uXi   » r2m^  radians, or dL * 3&0J 19' degrees, 
"d   * J n '*   »2irT.U0 

since <*> = -%=?-. 

Just as Lamb's parameter •*• governs the phase lags 

in laminar oscillations, it may he argued that a similar 
expression with § defined by the eddy viscosity rather 
than the molecular viscosity will partly control the 
behaviour of turbulent fluid undergoing simple harmonic 
motion.  By analogy with -D-aiugc.   , we find the 

H.dsr   %1 Rig ^ nr 
dimen8ionless ratio     iit ^» f^fr38* oc ilffR 

VNM0MENTIIM ^|H.Uo »  A'VO 
since eddy viscosity is proportional to TJ^, which is 

proportional to u^, in fact U^ « ^- . TF if C * 

Chezy coefficient for steady flow, and we assume that 
tidal flow depends on the maximum value TT  of the 
mean velocity in a vertical.  Seeing this unique com- 
bination of water depth H, tidal period I, and mean 
velocity amplitude u, the author (1959) has defined 

toe LAMB 1TOMBER as follows:- 
44714 H /,,x l-{ 

The factor 44714 is included to facilitate calculations 
on natural tidal oscillations, where the lunar semi- 
diurnal period is 44714 sec, and to produce conveniently 
sized numbers.  For example, the Mg stream in a channel 
of depth 10 m. with maximum velocity 2 m./sec. has is 2.24, 
With this definition, SchdnfeldTs formula for the phase 
difference over a rough bed reduces to the simple 
expressions:- 

jrfd • 1.22 jf degrees (24) 

Substitution in the above example gives d>.  » 2.7°. 
Hence the phase difference between surface and bed 
velocities (jj^) is of the order of 3°. 

fhe effect of the inertia term i.|| is to add a 

small velocity AU to the steady flow distribution. 
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Thus   AU (z,t) = U2 - Ux 

" Uo* i cos(w't — f>) — (^v  •cos w*} 

«2TJ0.Bin^w  sin (ort,- -|), neglecting[(-^) - 1J 

« U .sind.  sin cot,  if   <# is small. 

Hence we must apply the inertial correction (25)  to 
quasi-steady velocity profiles:- 

AU~U0.  sin^.  sinwt (25) 

This correction has been applied to the velocities 
in (21) to estimate the velocity distributions in the 
presence of both density and inertia effects, using the 

linear phase distribution 0*g.^o with pQ =» 3°, and 
the previously assumed values of slope components and 
roughness ratio, giving Nikuradse kg «*33 cm. with 

H = 10 m., corresponding to a tidal channel with large 
sand ripples on the bed.  Fig. 17 shows the resulting 
profiles.  Although the velocity gradients near the 
bed, hence XL* are increased after reversal of the tidal 

stream, they are correspondingly decreased before reversal, 
and the maximum value of €  appears to be the same as 

that obtained when inertia is neglected, with this 
"slowly varied" flow; only at very short tidal periods, 
as in hydraulic models, is there a measurable increase 
in the maximum bed shear stress.  However, the phase 
difference between velocity and water surface slope is 
by no means negligible, so linear superposition of the 
quasi-steady and inertial solutions of the dynamic 
equation cannot produce very reliable results.  But here 
we are interested in the general behaviour of estuarine 
water, so further refinement in the correction AU will 
not be attempted. 

Before leaving this subject, it should be emphasized 
that the phase differences inside the fluid, although 
small, may be important for the proper operation of tidal 
models with movable bed material, since grains set in 
motion relatively early in the tidal cycle may continue 
moving with the main stream even when the bed shear stress 
has fallen below the value required to initiate movement. 
For reproduction of inertia effects the Iamb number should 
be the same in model and prototype (unless the friction 
coefficient differs), calling for models without vertical 
exaggeration if the Proude scale law is followed. 
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EFFECTS OF FINITE TIDAL RANGE 

If the tidal range is of the same order as the water 
depth, as occurs in many shallow estuaries, then the 
second term in equation (15) cannot be wholly attributed 
to the salinity circulation and it may change sign along 
an estuary due to changes in bottom topography 
(contractions and expansions) as well as the water surface 
profile varying in time and space.  We must therefore 
apply a further correction to the velocity distributions 
at any cross-section. 

s-<& 
Longuet-Higgins (1953) showed that at elevation 

above a smooth bed, there was a net velocity 
in the direction of wave propagation, equal to 

with "long" progressive waves, where A38 amplitude, and 
C as celerity of wave.  Experiments indicate that the 

net forward velocity over a rough bed is lower than this 
figure.  The mass transport under a standing wave is 
smaller and distributed differently in the vertical. 
The case of a tidal estuary, which may be treated as a 
channel closed at one end and open to the sea at the 
other end, involves the combination of an incident wave 
whose amplitude decreases exponentially in the direction 
of propagation (from open to closed end), and a reflected 
wave whose amplitude decreases exponentially from the 
closed end to the sea.  A general solution is very 
difficult, but the direction of net movement in a tidal 
estuary may be inferred from available data on the 
variation of tidal elevations and mean velocities along 
the estuary. 

Abbott (I960) has suggested the criterion A? .e°) 

« 0 for finding the positions along a tidal estuary 
where sediment collects, so explaining the Mud Reaches 
in the Thames estuary.  Here f? = maximum velocity of 

tidal stream, and Q = phase difference between tide and 
stream. 
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NOTATION 

A area of cross-section 
a amplitude of long wave 
b breadth of surface of zero net motion 
C Che'zy coefficient of friction 
c concentration of salt by weight 
c0 celerity of long wave, = (g.H)'4 in the absence of 

friction 
D slope component due to longitudinal density gradient, 

H "*P 

d thickness of turbulent boundary layer in atmosphere 
e base of natural logarithms, = 2.718 
F slope component due to longitudinal velocity 

gradient, ~ ^(-^) 
f acceleration during reversal of tidal stream 
g acceleration due to gravity 
H water depth 
h elevation above bed of surface of zero net motion 
I surface slope, taken positive downwards to sea 
i imaginary number, defined by i * -l 
X number defined in text 
k8 sand grain diameter in Nikuradse'e experiments 
Z Lamb number 
1 length of estuary 
jL mixing length 
m,n numbers defined in text 
N eddy coefficient 
P slope component defined in text 
p pressure 
Q discharge = volume per unit time 
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HI  Richardson number 
R,S slope components defined in text 
T        tidal period 
t   time 
U,u time-mean and fluctuating velocities, respectively, 

in x-directlon 
V,v time-mean and fluctuating velocities, respectively, 

in y-direction 
W,w time-mean and fluctuating velocities, respectively, 

in z-direotion 
X   fluid displacement in x-direction 
x   longitudinal distance, positive from river to sea 
y   transverse distance 
z   vertical distance, positive upwards 
zn  roughness height 

Vi 
oL  dimensionless elevation w of surface of zero net 

motion 
A      Obukhov^ constant «s0.6 
Y  ratio of eddy coefficients of viscosity and diffusion 
$  thickness of laminar boundary layer in oscillating 

flow, . <4Jf)* 
£  "constant" introduced by Rossby and Montgomery 
H      dimensionless elevation w above bed 
0 phase difference between tide and tidal stream 
K von Karman's constant «s0.4 
v kinematic viscosity of fluid 
p density of fluid 
& standard deviation of turbulent velocity u 
t shear stress at elevation z 
Xo shear stress at bed 
<f> phase lag of velocity ~ 
co angular velocity of tidal stream « -TT- 

535 


