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INTRODUCTION. 

In previous publications Pelnard-Considere, Bruun and larras have 
d.erived theoretical shore formations. When doing so, it is necessary 
to idealize the conditions, such as a lxttoral transport by waves only, 
unvarying wave characteristics and a simple relation between the angle 
of wave approach and the littoral transport. Moreover various other 
simplifications have to be made in order to make it possible to handle 
the equations. 

The question may arise whether results, obtained from such an 
idealized situation, have any value for practical cases, where the con- 
ditions are much more complex and variable. The answer is no when we 
expect to obtain a true and detailed picture of the development of any 
particular stretch of coast. Such theoretical exercises can be of real 
value, however, because they help us to understand why and how certain 
formations come into being and how they are influenced by certain 
physical processes* This is the case for instance with such formations 
as deltas, spits and tombolos. 

We cannot say that we really know the function which determines 
the littoral transport. Up to now one of the simplifications in the 
mathematical treatment has been the restriction to stay within an area 
in which the values of <*.   are so small that the transport may be assaned 
to increase in direct proportion to the increase of the value of o< 
( c< being defined as the angle between the wave direction and the 
direction of the normal on the coast in the point considered)* However, 
experiments indicate that the littoral transport very likely reaches a 
maximum for a wave angle between 45° and 600. Interesting phenomena 
are bound to occur when this maximum is approached. 

With this in mind we have tried to introduce a transport function 
T « A sin 2ex., having its maximum when oC  « 45°. 

THE MATHEMATICAL TREATMENT, 

Ocnsidering a stretch of shore of length ds (fig. 1), the quantity of 
deposited (or eroded) material must be equal to the difference between 
the quantity of transported material in A and in B. Expressed by 
mathematical terms, we have: 

or 

- D 1* dldx  = |I dx di 

(1) 
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WAVE DIRECTION 
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Fig. 3 
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in which: 
T is the transport function 
D is the waterdepth 
t is the time 
x and y are the coordinates 

In fig. 1 the angle /3   defines the wave direction with respect to 
the system of coordinates and the angle u  the value of f. Since we 
take T only depending on <x , it is sufficient to differentiate t  to 
one variable. Substituting T - A sin 2o(, the equation (1) can be 
worked out as: 

4Accs2fi      / + 2 ia, 2/i M - ($f     bly    __   >± 
D r, /jK/vn* ax2     at (2) 

[" ffiJ 
In order to obtain a set of solutions suitable to our purpose, we shall 
confine ourselves to such coastlines as remain similar in shape whereas 
the scale of this shape is varying in the course of time. Hence we 
introduce new variables u and v, proportional to y and x respectively 
and we require that there exists a functional relation between u and v 
independant of the time t. An important property of this type of 
solutions derives from the fact that the transport along the coast 
depends on its direction only. Since the direction in a point of the 
coastline is independant of the scale, the transports at the end of a 
coastline segment remain constant, so that the volume behind this 
segment must increase proportional to t. Some of these solutions, 
therefore, are suitable more in particular to describe the development 
of a delta of a river which charges the shore with material at a con- 
stant rate. By the substitution: 

y • xivt x - vVT" 

the differential equation (2) reduces in the requisite way to 

4A&2/&,     /+2 t*« 2/3 $?-($?!     , dhl   + V*!L _ u  - O m 
o f/^/mn1       d&+ vdv  u - °     (3) 

provided the depth is taken as a constant, which means that the seabed 
is horizontal. 

This equation can be simplified somewhat further for a few special 
cases. First we consider the case in which tan 2y3 and £rp   are very 
small in comparison with unity. The equation (3) then yields: 

in which 
dv1 dv 

a- u+Acos2fr 
b 
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The solution of this equation is: 

a = C, (e~& + f    e~& dv) 

when the shore at time t = 0 is a straight line. In a slightly differ* 
form this solution has already been presented several times in previot 
publications. 

Likewise we can consider a second case where tan 2/3 is very sma] 
and ~ so large that we can now neglect the first and second terms oJ 
the numerator and the first term of the denominator of the fraction it 
(3). This equation turns now into: 

IduV civ     u ~ ° 

of which the solution is: 

also when the shore at time t • 0 is a straight line. Figure 2 shows t 
diagrammatical representation of these two special cases in which /3 do 
not differ much from zero while the quantity of material that the rive 
conveys to the sea is small in comparison with the transport of the 
coastal regime. 

It can be shown that the numerator of the fraction in the equatio. 
(3) becomes zero in the point where c<. m  450. This means that in that 
point either v~£ - U  must be zero or £$t  becomes infinite. The first 
solution corresponds to the trivial case of a straight line through th 
origin. The second solution means that the variation in the gradient o. 
the tangent divided by the variation in v, is infinite. That indicates 
an abrupt change in the direction of the coastline at the point in 
question. Prom a physical point of view, however, we cannot have a 
sudden jump in the quantity of material transported. Hence, such a poij 
must be a cusp. 

These results can be obtained from analytical considerations of 
equation (3). For more general solutions it is necessary to integrate 
this equation numerically. Then it is more convenient to use polar- 
coordinates instead of Cartesian coordinates and to introduce two para- 
meters, viz. the angle oC  mentioned before and the angle "h  between the 
shoreline and the radius-vector (fig. 3). We obtain the following syste 
of two simultaneous equations 

dq=* 2cn2u d* ~-L R2dy> (4 
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t*n V- dR  = Rdi/> (5) 

in which   If en V' are linked by 

oc * y / V - /3 (6) 

The equation (4) determines the displacement of the shoreline and 
corresponds with equation (3)* The equations (5) and (6) are geometrical 
conditions.   Q is defined as -X for which we adopted the function sin 
2X. * 
Solutions are being constructed by means of a computer. By this way of 
approach it will also b» possible, if necessary, to adopt other functions 
for Q and to alter the assumption that the seabed is horizontal. 

In the solutions two integration parameters appear. We intend to 
produce sets of curves for various values of these parameters. At the 
moment we write this paper, we are still engaged in pursuing this pro- 
gramme and we hmve to confine ourselves to show a few preliminary 
results. Two of the solutions obtained so far with fi>  equal to zero, 
are shown in the figure 4a and 4b. The curves are solutions which obey 
the differential equations and each of them has a special value of one 
of the integration parameters. Mathematically the solutions are correct, 
but the question is whether physical conditions can be found correspond- 
ing to them. This can be done by locating the initial shoreline along 
the axis v-j and Vo and in C and D the mouth of a river conveying a 
quantity of material corresponding with the angles <*, and crf». In this 
figure 4 we recognize the solutions shown in figure 2. Now, however, 
the solutions are not restricted to the condition that the ratio between 
the quantity of material transported by the river to the sea and the 
quantity which the coastal regime is able to convey, is small. As a 
matter of fact figure 5 shows the solutions in which ut and QL% are 
equal to 45°. The ratio mentioned before is then equal to 2. 

The work is being continued and further publication of the result 
is intended. 

I wish to thank Dr. SchtJnfeld of our Department for his aid in the 
mathematical treatment of the problem. 
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