
CHAPTER 9 

A THEORY FOR WAVES OF FINITE HEIGHT 

Charles L. Bretschneider * 

ABSTRACT 

A theory for waves of finite height, presented in this paper, is 
an exact theory, to any order for which it is extended. The theory is 
represented by a summation liarmdnic series, each term of which is in an un- 
expanded form. The terms of the series when expanded result in an ap- 
proximation of the exact theory, and this approximation is identical 
to Stokes' wave theory extended to the same order. The theory repre- 
sents irrotational - divergenceless flow. The procedure is to select 
the form of equations for the coordinates of the particles in antici- 
pation of later operations to be performed in the evaluation of the co- 
efficients of the series. The horizontal and vertical components of 
these coordinates are given respectively by the following; 

. / tr, . v , u A \N    cosh Nk (I +  z - rj ) >. kx = k(x-C) + I (kA0)   cmllKlt> '—   SinNk(x-Ct-0 smh Nki 

•  • ,  *>, L v> ,^A ,N sink Nk (J+ z-1) .,., , rt    t. kz = k (z-7?) + 2, (kA0)   . . ... a — cos Nk (x-Ct-£) 

and I 

M 

where 
l sinh Nki 

x and Z are the coordinates; k = 2jr/L, wave number; AQ= H/2,  half 
wave height; C = L/T, wave celerity and t is time*.* iis a parameter re- 
lated to the undisturbed mean water depth, d. The constant term kz0 = 
k (jt -  d); £ and f) are the horizontal and vertical displacements of the 
water particles from their respective position of no motion,  a = a , 
a„, a , etc., coefficients of the series as N «= 1, 2, 3, etc. to N = M. 
From the above equations it is possible to deduce the expressions for 
velocity potential and stream function. The horizontal and vertical 
components of particle velocity are obtained by differentiating £ and 
^with respect to time. Along the free surface z -1?!a 0 and z = Vs and 
all expressions reduce to simple forms, which in turn saves consider- 
able work in the evaluation of the coefficients. The coefficients are 
evaluated by use of Bernoulli's equation. The final form of the sol- 
ution is given by two sets of equations. One set of equations (same 
as above) is used to compute the particle position and the second set 
(the first time derivatives of the above) is used to compute the com- 
ponents of particle velocity at the particle position. That is, the 
particles and velocities are referenced to the lines of the stream 
function and the velocity potential. Expanding the two sets of equat- 
ions, by approximation methods, results in one set of equation for 
computing particle velocity and no equations are required for the part- 
icle position.The unexpanded form requiring two sets of equations, 
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** See Appendix for Symbols, p 182 
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being an exact solution, is more accurate theoretically, than the 
Stokes or the expanded form to the same order. Coefficients have 
been formulated for all terms of the order one to five for both the 
unexpanded and the expanded form of the theory, and are presented 
in tabular form as functions of d/L, as consecutive equations. 

INTRODUCTION 

Since 1847 when Stokes first presented his classical work on 
the theory of oscillatory waves, a number of authors have contri- 
buted to this fascinating subject. The reference list, which may 
not necessarily be complete, is given at the end of this paper. Ex- 
cept for the fact that the various developments given in these re- 
ferences entail certain difficulties and in some cases minor errors, 
no further discussions will be made thereof. 

There is much to be discussed in the present paper and the 
usual formality of elementaries will be minimized. The inertia of 
the air and the atmospheric pressure along the wave surface can be 
neglectedj i.e. these quantities are zero with respect to themselves, 
and the pressure within the fluid is assumed equal in all directions. 
There is to be no flow across the boundaries, the sea bed being rigid, 
flat, and impermeable, and the fluid is inviscid. The waves are long 
crests and x , z, t represent the two dimensional coordinates with 
respect to time, x is the horizontal direction measured from the crest, 
positive in the direction of wave propogation. z is the vertical co- 
ordinate measured negative below and positive above the undisturbed 
water elevation. The undisturbed water elevation is the mean water 
depth, and is that level the water seeks when all wave motion is ab- 
sent. Finally the flow is irrotational, and since divergenceless, is 
Laplaci&n. 

The equations by which the motion is described are as follows* 

„.,„.,#_+, {(i±)' +(£.)•} 

0 d24>   , dl± 
ax2       dz2 

4^- = 0    at   z = -d 
Oz 

aj> + _|£. .|P. + li. dP. . 0   when p = 0 
dt       dx     dx        dz     dz 
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Where <f> is the velocity potential, g acceleration of gravity; 
P  density of fluid} and p the pressure. 

The first equation is the usual equation of hydrodynamics, the 
second specifies irrotational flow, the third specifies no flow across 
the sea bed, and the fourth specifies no flow across the free wave 
surface. 

Coordinates 

The coordinates of the particles of water can be represented by 
a set of equations around which a theory can be developed. If the 
equations are selected in anticipation of later operations to be per- 
formed, then one might be able to minimize the work envolved. In 
the presence of wave motion the horizontal and vertical displacements 
(f,1?) of the water particles from the position of rest or the position 
of no motion can be represented respectively as follows? 

K^|oN(KA0)
N ^^ly^      cosNKU-Ct-O (2) 

{ See Figure I ) 

It then follows that the x, z coordinates of the particles are 
obtained from: 

M 

1 
l 

and 

M 

I 
i 

In the above equations 

kx - k <x-£) + I aN <kA0)N    C0ShZhm/~V)   Sin Nk (X_e) (3) 

kz-k(z-?n+£oN(kA0)"   S,nhN
5^i+J-7))    CO.NMX-*) ( 

2 AQ « H, the wave height, vertical distance between crest and trough 

k s 2ir/L» the wave number 
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t   +z 
x 

"   -z 

{ z-V 
Particle position at rest 

NOTE. 
No wave motion 

d     I i 
tide position displaced from 

/.   _£.   position of rest 

(z-i?) 

Particle position at rest 

NOTE. 
During wave motion 

FIGURE   I.       SYSTEM  OF COORDINATES 
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x is a parameter related to the undisturbed water depth. 

z = /- d is a constant to be determined 
o 

x,z, are horizontal and vertical coordinates of the particle 

C , *}  Are  the horizontal and vertical displacements of the particle 
from its initial undisturbed position of rest. 

C = L/T is the wave celerity 
L is the wave length 
T is the wave period 

a = a , a , a,, ....... a^ (Mth order), consecutive coefficients of 
the series'2 * M 

N = 1, 2, 3, ..... M (Mth order) corresponding to each of the above 
coefficients. 

The parameter Jc is related to the depth d according to 

dm± fL  (d + 77,.) d*=Z-z£ (51 
'0 

where f]   is the surface elevation with respect to the undisturbed water 
elevation, and kz = k(Z- d) . (See Figure 1) o 

The coefficients a , with the corresponding subscripts represent a 
convenient means for keeping track of the various terms of each order; 
i.e., a , is the first order term, a2 and a

2
( are the second order, a , 

a* and a (a ) are the third order terms, etc. 

One of the conveniences of the system of coordinates used in the 
above equations is that the free surface conditions are obtained by 
setting Z - T\  = 0, whence 

M        N 
k7?s s £ °N (kAo) cos Nk (x-£s) - kz< (6) 

where the constant kz is required as shown later 
o 

M 

s'Mxs-£s)+2aN   (kA0)N  tonh'Nkl
sinNktxs-gs) 

(7) kx* 
I 

Horizontal and Vertical Components of Particle Velocity 

The horizontal and vertical components of particle velocity may 
be obtained respectively from: 
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c "    c   a t       ax    "   dz 

and 

(8) 

(10) 

(ID 

w_. j_ £2 - _d_i_.   _dJL (9) 
c " c at     az "   dx 

whence 

£ -(1-^)1 NaN(KA0)N   ^l^/2"^    - Nk(x-Ct-e) 

+ i Y NoN(kA0)N    "nh,!!,kh
(iSk

+j",?)    •'" Nk (x-Ct-C) 

and 

g--(i-^)Zw.w(kA0)" 
5'"h

sr^y'1"^"M..-ct-o 

The horizontal and vertical components of particle velocity are also 
given by: 

JL-.-±l±   =__L Ulf (12) 
c     c ax       c az 

and «L=_ JL ii s+ i  d± (i3) 
c      c dz       ^ ax 

Where d) and ty are the velocity potential  and the stream function 
respectively.    It is seen from Equations 10  and 11 together with 
Equations 12 and 13 that  the velocity potential  and stream function ex- 
cept for arbitrary constants will have the following forms: 

_ J<i =   £ aN(kA0)
N    co»hNk(l+z^/c>. sinNk(x-Ct + tf/c)       (14) 

-4- - I °N ( kA0)N   »'"hNk(l+z+»/c)C0, Nk (X-Ct+ */c ) CS) 
C        ^ ° sinh NkX '^ 

Proof of Irrotational Plow 

Equations 10 and 11 represent irrotational flow irrespective of the 
actual values of the coefficients.    That is: 
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Performing the. above operation,  it is found that 

du      dw  _        du      <3w  , v« ...   ,N   cosh Nk (/f z-7?) ... ,     r.   es -j-+-j- = - (3— +"3— ) A NoN (kA0       A '—    cos Nk (x-Ct-£) 
dx      dz dx      dz N sinh NkX 

,,dw_du^Wn ,,.A >N sinh Nk U+ z-V)    Cin wu .  rt <r, 

The above does not yet prove that V <f>  = 0 until the following 
is evaluated 

For the summation terms of equations 17 and 18 to exist, the only 
possible solution of the simultaneous equations 17 and 18 is 

du . dw _ _ . dw du . -5— + -5— = O and -=— - -=— = 0 
Ox   Oz dx   oz 

therefore  V2 <f>  = 0 

The above proof is more easily verified by performing the above 
operation on the equations given in the next section (Table I, for example). 

Power Series Equations for Particle Velocity 

In the development following it will be convenient to use 

k (X - ct -£) = 0' (19) 

and 

U • I NaN (kA0)
N ^y^'-^  cos N B' (20) 

and 

W • I NaN (kA0,
N  ""^^V-1"  ..n N 61 (2.) 

whence 
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C  = (]-^]   U  +  fW (22) 

and 

£ = (!-£)   W  -   f   U (23) 

The simultaneous solution of Equations 22 and 23 can be made by the 
process of resubstitution to as high an order as required where the Mth 
order will include all terms of U, W, and U W , where p = 0 to M, 
q = 0 to M, and r + s = 1 to M. 

The process of resubstitutions leads to the following terms: 

TABLE 1 

M U/C w/C 

1 U W 

2 -U2+W2 -2WU 

3 U3-3UW2 -W3+3WUZ 

4 -U4+6U2W2-W4 4W3U-4WU3 

5 U5-IOU3 W2+5UW4 W5-I0W3 U2+ 5WU4 

6 - 6U6+ I5U4W2- 15 U2W4+W6 -6UW5+ 20W3 U3 - 6 W U 5 

7 U7-2IUSW2 + 35 U3W4- 7U W6 - W7 + 21 W5 U2 - 35 W3U4+ 7WU6 

It will be  seen that  a general expression can be written for U/C, 
having the following power series equation: 

*  =   [   Kr,s]uUrWS (24) 

where 
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<~ {.r:S:&8.:S }-«"» [::i *«.• °] 
and M = r + s 

For example, consider the 8th order (M = 8), in addition to 
those terms for M = 1 through M • 7, there will be the 8th order 
term for the following combinations of r,s = (8,0); 

(6,2); (4,4); (2,6); and (0,8), whence from equation 24 the 
8th order terms for u/C are 

- U8+ 28U6W2- 70U4 W4+ 28U2 W6- W8 

Similarily for the term w/C the power series equation; 

HKr,s]wUr   WS (26) 
where 

for 
f r«0,l,2,3,4 1 
I  s= 1,3,5,7 J 

r! si 

M = r + s 

(27) 

For example, the 8th order term will have the following 
combinations of r,s = (7,1); (5,3); (3,5); and (1,7), whence from 
equation 27 the 8th order terms for w/C are 

- 8U7W + 56U5W3 - 56 U3 W5 + 8UW7 

Thus equations 25 and 27 can be used to obtain all terms 
from the first order to the Mth order respectively for u/C and w/C 

Bernoulli's Equation 

The problem of wave motion can be reduced to one of steady 
state by superimposing a steady current on the wave motion equal to 
the wave celerity but of opposite direction. This operation, known 
as the Hayleigh principle, leads to Bernoulli's equation applicable 
along the free surface, where it is assumed that everywhere along 
the free surface the pressure is constant or is zero with respect 
to atmospheric pressure, whence 

(us-C)
2 + ws

2 + 2g17s = constant, (28) 

where the subscript s refers to the conditions at the free surface, 
Equation 28 can be written as follows: 

(-^- -I)2 + (^)2 + -^8- =K= constant (29) 

or solving for k1? 
s 
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It will be convenient to define the Bernoulli term as 

B.-^--H<IT>,-MTM*] (3I) 

Along the free  surface  equations 20  and 21,Z- V = 0, whence 

Us= X NoN (kA0)
N XN   cos N01 (32) 

and 

Ws=  I  NoN  (kA0)N  sinN0' (33) 

where    XN   = ' N        tanh Nki 

From Table 1,  one may obtain the Bernoulli term B    which leads 
to the following termss 

TABLE II 

Order (M) Bs = £.  - -L [ ( !£ f +   (^)2] 

1 Us 

2 -3/2   Us
2 + ^ Ws

2 

3 2US
3-2U8  Ws

2 

4 - 5/2 US
4+5US

2WS
2-^ Ws

4 

5 3 US
5-I0US3WS

2+ 3US   Ws* 

6 -7/2 Us
6+ 35/2  Us

4 Ws
2-2I/2US

2 Ws
4+ -g Ws

6 

7 4US
7-28US

5 Ws
2 + 28US

2WS
S-4US    Ws

6 

It will be seen that a general expression can be written for 
B   ,  having the following pt>wftT series equation: 
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8s  =  [Kr,s]Us
rWs (34) 

where 

I)! 
's! 

**{:: 1:1: X J: ::.!.::::::} ~* H- S • *°-° • °) 
For example, the 8th order terms will have the following com- 

binationsof (r,s) = (8,0); (6,2)} (4,4); (2,6); and (0,8); whence 
from Equation 35 the 8th order terms for B are: 

-9/2   Us
8 + 42 Us

6 Ws
2 - 63 US

4WS
4+I8 Us

2 Ws
6 - •§ Ws

8 

Thus Equation 35 can be used to obtain the Bernoulli term B 
to  as high an order as required.    The term B    will have an expanded 
form as follows: s 

135) 

Be 

+ 
+ 
+ 
+ 

B„+ Bl3(kA0)2+ B,5(kA0)4+  Bl7(kA0)6+ •    •] kA0   cos 0' 

B22+ B24(kA0)2 + B26(kA0)
4+--  ]   ( kA0)2  cos 2 0' 

"B33+B35(kA0)
2 +  B37(kA0)

4+    •    ]  ( kA0)3 cos 30' 

B44+B46(kA0)
2 +       ••    ]  (kA0)4   cos 4 0' 

B55+ B57 (kA0)2 ]    (kA0)s   cos 5 0' 

(36) 

+ [BJJ+ BJJ + 2 (kA0)
2 + •  ] (KA0)

J cosJ0' 

+ BM (kA0)
M cos M 0' + R 

In the above, the first subscript refers to the terms correspond- 
ing with identical (kA )^ Cos J0, J being the general term. The 
second subscript refers* to the order. For example, B  is the fifth 
order term for Cos 0 ' , and Bg_ is the fifth order term for Cos 5 0 ' 
R is a constant and represents the sum of the remainder terms for which 
no Cos N 0 exists. 

Procedure for the Evaluation of Coefficients 

The coefficients a , a , a ...... a must be evaluated such that 
the surface boundary conditions are satisfied. The surface profile 
elevation with respect to the undisturbed water level is given by 
Equation 6. 
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The surface boundary conditions are satisfied when Equation 6 
is made identical to Equation 30. To whatever order is required 
Equation 30 is a means by which the solution is obtained.  Incidentally, 
such a solution is similar to a least squares solution in statistical 
theory. 

It will be convenient to use an expanded form of Equation 30 as 
follows: 

k%=Z °N   (kAo)N  cos uQ\ where 

Q2 = 

a, = 

a* = 

a* = 

A,,+ A,3(kA0)2 +Al5(kA0)4 + A17 (kA0)6 + 

A22 + A24(kA0)2 + A2e(kA0)4 + 

A33 + A36 ( kA0)2 + A37( kA0)4 + 

A44 + A46 (kA0)2 + 

+ A„ (kA0)
z + + kz. 

(37) 

The wave height H = 2A is obtained from the difference between V^ 
at © * 0 and 17 at 0 = ir, a8d since A  will always be equal to unity as 
long as H = 2AS, whence from equation 37, 

0 = (A13+A33) (kA0)
2+ (A15+A35+ A55) (kA0)

4 

+ (Al7+A37+A57+A77) (kA0)6 N 

Equating to zero terms of (kA ) , one obtains the following! 

A13 =~A33 

(38) 

A15=-(A
35
+A55> 

17 

etc. 

~(A37 + A57 + A77' 

(39) 

The wave celerity can be expressed as followss 

*f2 = F, + F3 (kA0)
2+ F5(kA0)4+ F7(kA0)6 +  (40) 

Using Bernoulli's Equation 30, together with Equations 37, 39, and 
40 and equating like terms of cosNO one obtains the following set of 
equations? 
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[An + A13(kA0)2+ Al5(kA0)4 + ] - 

F,+ F3(kA0)2+ F5(kA0)4+      ][B,,+ Bl3(kA0)2+ Bl6(kA0)4+  • •]»<) 

A22+A24(kA0)2 +    ]-[F,+ F3(kAo}2+    ] [B22+ B24( kA0)2 + • •• 1 = 0 

[A33+A35(kA0)2+    ]-[F, + F3(kA0)a+    •][B33+B35(kA0)2+        ]=0 

[A44+       ]-[p|+    '•] [B44+-     ] =0 

etc   and - k20 = [F, + F3 (kA0)2 + Fs ( kA0)4 + •     ] [ -^y1  + R ] 

The procedure is to expand each of" the^individual equations 
and then equate  to zero like terms of (KA )   .     It will be convenient 
to present the higher order terms of the A's and the F   's in terms 
including the B's terms and the lower order term of A's and F's. 
Using Equations 41 (and also those of Equation 39) the results are 
summarized in Table III. 

Term 

A„= I 

F| =  l/B„ 

A22= F,  B22 

A33= F,  B33 

Ai3=-A33 

Fa = Ai» Fi   — Bia F *l3rl 

A44= F,   B44 

13 r I 

A24" F| B24+ F, B 3 D22 

A55= F|  B55 

A35= F| B35+ F3 B33 

A|5= -A35-A55 

F5 = A,5F| -F,2BI5-F| F3BI3 

A66= F, B66 

A46= Fi B46+ F, B 3 °44 

Fi  Bpc+ Fa B»4+   Fs  B *26" rl D26'r r3 D24 5  D22 

TABLE   III 

Source 

H = 2A 

Eq 41 

Eq 41 

Eq 41 

Eq 39 

Eq 41 

Eq 41 

Eq 41 

Eq 41 

Eq 41 

Eq 39 

Eq 41 

Eq 41 

Eq 41 

Eq 41 

Order 

I 

I and 2 

2 

3 

3 

3 and 4 

4 

4 

5 

5 

5 

5 and 6 

6 

6 

6 

(41) 
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The above scheme can be carried to as high an order as required, 
merely by writing down the additional terms. For example, the seventh 
order terms are obtained from Equation 41 as follows: 

A77 = F1B77 

A57 = F1B57 + F3B55 

A       =FB       +PB     +PB 
37 1  37 3   35       5  33 

A       =FB       + F  B       +FB       +FB 
17 1  17 3  15 5 13 7  11 

or F from the last equation using B  = 1/F 

is as follows: 

F=FA    - F    B       -FFB       -FFB *7    ri   AI7     ri  B
17       *x*3 15       V5  13 

Similarily the eighthorder terms can be written down directly 
as follows: 

A88 = F1B88 

A  = F B  + F B 
68   1 68   3 66 

A48 = P1B48 + F3B46 + F5
B44 

A28 = P1B28 + F3B26 + F5
B24 + P7 

+ F7
B22 

Thus all expressions presented (Tables I, II, and III) can be 
carried to as high an order as required, with no difficulty whatsoever. 
These relations are convenient working parameters for the actual 
solution to a particular order. 

Example: Fifth Order Solution 

In order to continue the solution to any particular order, it 
is necessary to express the B - terms in terms of a , using Equations 
32 and 33 and equations 34 anct 35 (Table II). It will be seen from 
Table II that there will be cross product terms involving CosNO' and Sin 
N9' and it will be necessary to replace these cross product terms using 
trigonometric identities. For example, the fifth order solution will 
require the terms of U , U  , u , U W , etc. be determined. Using 
trigonometric identitiei thlse tlrms Including all orders from one to 
five are as follows: 
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Us= a, X, (kA0) cos0' + 2a2X2(kAo)2cos 2 0' + 3a3X3(kA0)3 cos 3 0 ' 

+ 4a4X4 (kA0)4cos 4 0' + 5a5X5 (kA^5 cos 50' 

US
2=T °i2x,2 (kA0)2+ 2a22X22(kA0)4 

2a, X, a2X2 (kA0)2 +6a2X2 a3X3(kA0)4l (kA0)  cos 9' 

-g- a,2 X,2        +       3a, X, a3X3 (kA0)2] (kA0)2 cos 20' 

2a, X, a2X2 + 4a,  X, a4X4(kA0)2l   (kA0)3 cos 30' 

2a2
2X2

2+ 3a, X, a3X3 ]   (kAo)4cos4 0' 

4a, X, a4 X4 + 6a2X2a3 X3]   ( kA0 )5 cos 5 0' 

+ 

+ 

+ 

usH 
+ 

+ 

+ 

+ 

a,2 X,2 a2 X2   (kA0)4 

•f- a,3X,3 (kA0)2 + (6a, X,   a2
2X2

2+ |-a|2X,2a3 X3)(kA0)4] (kA0) cos I 

3a,2X,2a2 X2 (kA0)2]   (kAo)2cos20' 

-4-a,3X,3+ ( |-a,2X|Za3 X3 + 3a, X, a2
2X2

2) (kA0)2] (kAo)3cos30' 

-§-a,2X,2a2 X2]  (kAo)4cos4 0' 

3a, X, a2
2X2

2+ -§- a,2 X,2a3 X31 (kA0)5 cos 5 0' 

Us
4=-|- °i4 X,4 (kA0)4+ [4a,3X,3a2X2(kA0)4]   kA0   cos 01 

+ -g-a^X,4 (kA0)
4   cos 2 0' 

+ 3a,3X,3a2 X2 (kA0)s cos 3 0 ' 

+ T" ai4*,4 (kAo)4cos40 + a,3X,3a2X2(kA0)5 cos 50* 

Us
5= -ra,sx,5(kAo)3cos0'+ -j| a,s X,s (kA0)» cos 3 0 +-^ a,6 X,5(kA0)5 cos 5 0 
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Ws
2=i a,2 (kA0)2 + 2a2

2(kA0)4 

+ [20, a2 (kA0)
2+ 6a2a3(kA0)4l (kA0) cos 0' 

+ [30, a3 (kA0)2- -I- a,2]  (kA0)2 cos 2 0' 

+ [4a, a4(kA0)2 - 2a, a2l  (kA0)3 cos 3 0' 

-[2a2
2+ 3a, a3l   (kA0)4 cos 40' 

- 4a, a4 + 6a2 a3    (kA0)5  cos 5 9 

W 4 = -|- a,4  (kA0)4 + 2a,3 a2 (kA0)6  cos 9' 

- -2- a,4 (kA0)4 cos 2 0'- 3a|3a2 (kA0)5 cos 3 0' 

+ ± a,4(kA0)4 cos 4 0' +  a,' a2   (kA0)5 cos 5 0' 

USWS
Z= °i2 X, a2 (kA0)* - ^  a,2 a2X2(kA0)4 

[-4-a,3X| (kA0)2 + (2a, X, a2
2 + -§• a,2X, a3 - -| a,2a3X3)(kAo)4] (kA0) cos 0' 

+ [o,2a2X2 (kA0)2l    (kAo)2cos2 0' 

+ [(-| a,2a3 X3 + 2a, a2
2X2-a, X, a2

2)(kA0)2- ^ a,* X, 1 (kA0)3 cos 3 0' 

-[a,2X, a2 +  -~- a,2 a2X2]  (kA0)4 cos 4 0' 

-[a, X,a2
2+ -| a,2X, a3 + 2a, a2

2X2 + ^ a,2 a3X3l (kA0)5 cos 5 0' 

Us'Ws2 = 1" V X,2 UA0)4 

+ [a,3 X,2a2 (kA0)4]   (kA0)   cos0' 

-[( Y a,3X,2 a2 - -^- a,3 X, a2 X2 ) (kA0)2] (kA0)3 cos 3 01 

-[— a,4 X,2] (kA0)4  cos 4 0" 
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-[-g- ai3X,2a2 + ±- a,3X| a2 X2]   (kA0)s  cos 5 0' 

US
3WS

2=  [-f-a.'X.MkAo)4]    kA0     cos0' 

~[JQ   a,6 X,5 (kA0)2]   (kA0)3  cos  3 01 

- [-j^ a(5 X,5 J   (kA0)5   cos 5 0' 

Us Ws
4= [-J- °i5 X.   (kA0)4]   (kA0)    cos0' 

-[lT ai5xi <kV2]   (kA0)3 cos 3 5' 

+ [-^- a,6X, J  (kA0)s   cos 5 0' 

Using the above expressions, together with Table II, it will be 
convenient to summarize the results in Table TV 

162 



A THEORY FOR WAVES OF FINITE HEIGHT 

TABLE     H           Terms of  Bs to   Fifth Order 

R —Terms 

(kA0)2cosO (kA0) cos0 (kA0) 2cos 2 0' (kAo)3cos3 0' (kAo)4cos4 0' (kA0)5cos 50' 

-3/4o,2X,2 o,   X, 2a2 X2 3 a3 X3 4a4 X4 5o6X5 

1/4 a,2 -3/4 

- 1/4 

0,2X,2 

o,2 

-3o, X, a2 X2 

— a,  o2 

3o2
2X2

2 

-9/2a,X,a3X3 

6a, Xj a4 X4 

(kAo)3cos0' —9 o2 X2a3X3 

—3o, X, a2X2 l/2a,3X,3 -o22 - 2 o, a4 

a,   a2 l/2a,3X, -3/2 0| a3 — 3 a2 a3 

3/2a,3x,3 3a,2X,2a2X2 6a,  X, a2
2X2

2 

-l/2a,3x, 2a,2X, a2 

o,2 a2 X2 

-5/16 a,4X4 

9/2a,2X,2a3X3 

2a, X, o2
2 

(kA0)4 (kA0)5 cos 0' (kA0)< 'cos 2 0' (kAo)5cos3 0' 3 0.2X, a3 

-3a2
2X2

2 — 9a2 X2 a3X3 -9/2 a 1  Xl  a3X3 -6 a, X, a4X4 -5/8 a,4X,2 4 o,   o2
2X2 

o2
2 3 a2 03 3/2 °l    °3 2 a,   o4 -1/16 a,4 3/2 a,2 a3 X3 

3o,2X,2a2 X2 12a, X, a2
2X2

2 6a,2X, 2a2X2 9a,2X,2a3X3 -5/2a,3X,3a2X 

- 2 a,2 X, a2 9/2a,2X|2a3X3 -2a,2 a2 X2 6 a,  X, a2
2X22 -5/2a,3X,2a2 

a,2 a2 X2 -4a,   X, a2
2 -5/4 a,4 X,4 -3 a,2 a3 X3 -5/2 a,3 X, a2X 

-15/16 a,4X,4 -3o,2 X, a3 1 /4 0,4 - 4 a, a2
2X2 — 1/2 a,3a2 

5/8 Q|4X,2 3/2a,2a3X3 2 a,  X, a2
2 3/16 a,5 X,3 

-3/16 a,4 -IOo,3X,3a2X2 

5 a,3X,2o2 

-a,3a2 

15/8 a,5X,3 

-5/4 a,5 X,3 

3/8 a,5 X, 

-l5/2a,3X,3a2X2 

-5/2a,3X,2a2 

5/2a,3X, a2X2 

3/2 a,3a2 

15/16 a,5x,6 

5/8  0,5 X,3 

-9/16 a,5x, 

5/8 a,5 X,3 

3/16 a,5x. 

Remembering the forms for a (Equation 34) it will be seen that certain 
a terms upon substitution will be transferred down the table from(kA0) to 
(kA0)   , (kAo> N+4f etc>  jjjg substitution and the proper tranfers result in 
the B. terms and are conveniently summarized in Table V. s 
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TABLE 1C- Bs - Terms to  Fifth Order 

-kz0 

)• F| + F3(kA0r/       BM   = B22 =                B33 =                   B44 = B55 = 

K-l                      X, 2 A22X2              3   A33X3             4 A44X4 5A55X5 

2 -3/4 X,2          -3X,A22X2 -3A22
2X2

2 -6 X, A44X 

B,3= -1/4                - A22 -9/2X,A33X3 -9A22X2A3 

(kA0)2              X,    Al3 1/2 X,3            - A22
2 - 2 A44 

-3/4X,2          -3X,A22X2 1/2 X, - 3/2  A33 -3A22A3 

A22 3X,2A22X2 6X,A22
2X2 

1/4                    3/2 X,3 2X,A22 9/2X,2A33 

-I/2X,                                                                        A22 X2 2X, A22
2 

-5/16 X,4       3X,   A 33 
.2 

B|5= B24 = B35 = -5/8X,' 4A22
2X2 

Xi    A|S 2A24X2 3 A35X3 -1/16 3/2 A33 X3 

(kA0)
4 -3X,X2AI3A22 -3/2 A|3X,2      -3X,X2AI3A22 -5/2X,3A22 

-3/2X|2A,3     -3X,X2A24        -1/2 A|3 -3X|X2A24 -5/2 X|2A2; 

-5/2X,A22 

- 1/2  A22 

3/16 X,5 

5/8 X,3 

3/16  X, 

1/2  A,3 A,3A22 -9/2X,A33X3 -A,3A22 

- 3 A22
2X2

2 A24 3/2   A33 - A24 

A222 9/2X,3A,3 6X,2A22X2 3/2  A|3X,3 

3 X |  A22Xg -3/2 X, A,3 — 2 A22X2 3/2 AI3X, 

-2X, A22 -9 A22X2A33X3 -5/4X|4 — 6 X| A44X4 

A22 X2 3 A22 A33 1 /4 2 A44 

-15/16 X,4 !2X, A22
2X2

2 9X,2A33X3 

5/8  X,2 9/2X,2A33X3 6X, A22
2X2

2 

-3/16 -4X, A22
2 -3A33X3 

-3X, A33 -4 A22
2X2 

3/2 A33X3 2 X, A22
2 

-IOX,3A22X2 -I5/2X(
3A22X2 

5X,2A22 -5/2X|2A22 

- A22 5/2 X, A22X2 

15/8  X,5 3/2  A22 

-5/4 X,3 15/16 X,5 

3/8 X, 5/8 X,3 

- 9/I6X, 
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Now from Table 3£, using the relations of Tables III, one obtains immedi- 
ately the following fifth order solution. 

TABLE    TZI 

A„ =  1 

F, =  1 /X, =  tonh k£ 

A                   F| 

{ Azz"     2F,X2-I 

A     -           F| 

{ A33 "     3 F, X3 - 1 

A|3 =   - A33 

3X,2+ I 

A22(3X, X2+l) - 4*- (I + X,2)} 

A44= 

F3 = F, A,3 - F,2  [ Al3 X, - A22( 3 X, X2- I )   +      3X'2"
X|] 

4F
F

X  -| ( A22
2(3X2

2-t-l ) + -§• A33(3X,X3+I )-A22(3X,2X2+2X| + X2) 

5X|4 + IOX|2 + l    1 
16 J 

24=    2F|X8-I    {-^i(3X'2+l) +|-A33(3X, X3-I)-2A22X2(3X,2-I) 

+ •£- <5X,4-I) -  •£*-   (8A22X3-3X,2-I)} 

55=     5FX'B-I    {2A««(3X| X4+l )  + 3A22A33( I    +  3X2X3) 

-2A22
2( 3X, X2

2+ Xi   +2X2)--
3r A33(3X(

2X3 + 2 X, + X3) 

+ -2-A22<5xi3X2+5X,2+5X, X2+ I )- ^- (3X,*+I0X,2+ 3 ) ]• 

^ T  (A|3A22(3X, X2 +1 ) + A24(3X, X2 + l )--|- A,3Xi (I +X,2) 
|X3-l     l c 

+ 2A44(3X,X4- I) -3A33X3(3X,2-I ) -2A22
2 (3X, X2

2-2X2+ X, \ 

+ ^2 (I5X,3X2 + 5X,2-5X, X2-3 )- —• (I5X,5+ I0X,3-9X,) 

- -^- (6A33X3-6A22X,X2-2A22+X, + X,3) } 

3F, 
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TABLE VI    con't 

AI5 = - A35 - A55 

Fs  =   { F, A,5 - F,2 [x, A,s - A,3 A22( 3 X, X2 - I ) - A24 ( 3 X, X2 - I ) 

+ -§-A,3X, (3X,2-I)-3A22A33(3X2X3-I ) + 4A22
2X, (3X2

2-I) 

+ |-A33(3X,2X3-2X,+X3)-A22(IOX,3X2-5X,2 + l) + i(|5X,8-IOX,3 + 3> 

- F,  F3 [A,3X, - A22(3X,   X2 -I)  +  -|L   (3X,2 - I )1   \ 

The constant in Bernoullis' equation is obtained from the first 
column of Table Vt as follows: 

K = (l+(kA0)2  3X'*~'    + (kA0)4[Al3(3X,2-l )  + 2A22
2(3X2

2-I) 

-2A22(3X,2X2-2X|  +X2) + -L (|5x,4-|0X,2 + 3)] 

The above presentation of consecutive equations are in a convenient 
form for computing the A- terms and the F- terms for any selected value 
of TnJt t either by the long hand method or by use of a high speed computer. 
For example, consider lnJl^ 2ir (deep water), then one obtains tanh k/  = 1; 
in fact, for kJi * 2rr, tanh Nki « 1, whence X , • X    • X    * X    • X    « 1. 
It will follow in turn: ' 12        3        4        5 

3 3 8 An =  I ,   F,   = I,  A22 = I ,  A33 =  -g- ,   A|3 
= ~ "2* »   F3 = I >   A44 =  -3" 

A24= ~ -f" ' A«= ^ •  A35= - ^" , A,5 = - -JL and   F5 = •!•,  and 
the constant in Bernoullis' equation becomes 

K = l + (kA0)2- 6 (kA0)4-2kz0 [l-(kA0)2l 

The Undisturbed Mean Water Depth 

The undisturbed mean water depth is obtained by use of Bquations 5, 
6, and 7, in which cos Nk (X - £ ) and sin Nk (X - £ ) are represented 
by sums of two products each respectively as follows: 

cos  Nk (X -£s ) = cos Nk£s cos Nkx    + sin Nk£s sin Nkx (42) 

and 

sin Nk (X-£s) 
3 cos  Nk£s sin Nkx   - sin Nk£s cos Nkx (43) 
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Now cos Nk£     and sin Nk £    can be expanded by series to  as high 
an order as required.    Por example,  the fifth order expansion for 
equations 6  and 7 are as follows; 

k7?. [l- Y (k£s)
2 + -J3- (k£s)

4]  kA0   cos kx 

+ a, 

+ a2 

+ a2 

+ °3 

+ a, 

k£s   - 
 !_ 

s 6 

I - 2  (k 

(k £s>
3] kAo   sin  kx 

k£s 

£-s)
2]  (kA0)

2  cos 2kx 

2k£s- -|- (k£s)
3] (kA0)2  sin 2kx 

I - -§-  (k£s)
2]  (kA0)3 cos 3kx 

3k£sl (kA0)3 sin 3kx 

+ a4 (kA0)4  cos 4kx 

+ a4  [4k£sJ   (kA0)4 sin 4kx 

+ a5  (kA0)5  cos5kx -kz0 

X,   [«--§- (k£s>2 + "2T <k^s)4]  <kAo)   sin kx 

k£s- -^- (k£s)
3] (kA0)   cos kx 

I - 2   (k£s)
2]   (kA0)2 sin 2kx 

2k£s- -y   (k£s)
3] (kA0)2  cos 2kx 

- a. X, 

+ a2 X2 

- a2X2 

+ °3x3 

- a3X3 

-§-  (k£s)
2]   (kA0)3   sin 3kx 

3k£s 1 (kA0)3   cos 3kx 

+ a4 X4 (kA0)
4  sin 4kx 

- a4X4 [4kCs] (kA0)4 cos 4kx 

•I- a6X5 (kA0)5   sin 5kx 

In the  above equations   XN   =   -—,   .,, * M N tanh Nki 

(44)- 

(45) 

167 



COASTAL ENGINEERING 

The procedure for solution is first to eliminate k £ from the 
right hand side of Equation 45. This is done by the process of re- 
substitution: the first order is obtained as k£ « Q X kA sin kx 
and is substituted into equation 45 to obtain thesseeond ordSr* which 
in turn is again substituted into equation 45 to obtain the third order, 
etc, until the desired order is obtained. The resulting expression is 
then substituted into equation 44 to eliminate k£ from the right hand 
side, obtaining an expression for kl? independent of k£ . Finally, this 
equation for ki? is substituted intosequation 5 and thesintegration re- 
sults is an expression for d/L as a function of x/L, It will be con- 
venient to write equation 5 as: 

kz0 = k (i-d) = -j- J     krls    dx (46) 
*o 

It was found to the fourth order (also fifth order) that: 

kz0 = -+- a,2 X, (kA0)
2 + a2

2 X2 (kA0)
4 (47) 

Where all other terms vanished by integration,. Based on.equation 
47, the sixth order term was predicted to be 3/2 a  X_ (kA ) , and was 
then verified by the detailed process of resubstitution and°integration. 
Based on the above findings one can suppose the following power series 
equation: 

•"6= T I NaN2 *N (kA0)
2N (48) 

where N * 1, 2, 3, ,,.,M, order M » 2N 

For example, the eighth order term is found by setting N * 4, 
which results in 

2 a4
2 X4 (kA0)

8 

Since the depth is the known parameter it is desirable to obtain / 
as a function of d, whence 

ki = k(d + z0) (49) 

Where X_ •   ti"«^l  and letting YN " '+'" W wrA    b? substituting 
k(d + z ) f©2 k/an3nuSlng hyperbolic iSentllSes'Tsum of two products) 
one obtains 

m       YN + tanh Nkz0 
N    1 +YN tanh Nkz0 

Equation 50 can be expanded to as high an order as required 
according to the following: 

XN = [ YN + tanh Nkz0l[ I-(YN tanh Nkz0+ (YN tanh Nkz0)
2 1 (51 
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tonh Nkz0 = Nkz0 - y (Nkz0)
3+i|- (Nkz0)

s-^ (Nkz0)
7+-  j (52) 

Bquations 51 and 52 are then used together with equation 47, and 
by the process of resubstitution kz is eliminated from the right 
hand side, and one obtains a relatiSn of kz as a function of kd. For 
example to the sixth (also seventh order): ° 

kz0 »-£-a,
2Y, (kA0)

2 + [a2
2Y2 - -3-a,

4 Y, (Y,2 - I )1 (kA0)4       (53) 

r 3      o            n     ,    Y, (Y,2-l) + 2Y, (Y2
2-I ) m a        Y,2-2  1 

+ [T°32Y3-a'2a22   -3—1 2  +al«Y1(Yl
2-l)-l§—J(kA0 

Returning now to the fifth order solution, and from Table IV 

a, = I + Al3 (kA0)
2 + A|5 (kA0)

4 

)S 

(54) 

°z s  ^22 + A24 (kAo)2 ,  whence 

kz0 =-2"Y, (kA0)
2+ [A22

2Y2 --+-Y, (Y,
2-l) + A|3Y, ] (kA0)

4 

Por the terms A  and A  above for the fifth order tanh ki?« tanh kd, 
and using A  and A  as obtained before one obtains for equation 54 

kz0 = K2 (kA0)
2 +K4(kA0)4   where (55) 

Kg s f Y, 

K4 • -glf (17-19 Y,2 - 21 Y,4 -9Y,6) 

Accelerations 

The horizontal and vertical components for the accelerations 
o£ the fluid» particles are obtained respectively from the following 
expressions: 

(56) dt  ' at       2 L a* + ax J 
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The differential quantities on the right side of the above 
equations can be obtained by use of equations 24 and 26 together 
with equations 20 and 21, whence 

-^ = c[Kr,s]u[ru
r-WS   If   +   .u'W"-|* ] (58) 

-ff = c[Kr)S]w[rU-W^+sUrW--^] 

*td? =c2[Kr'SL   U'  WS[rUr-|WS-|^ + sUrWs-' M.] (60) 

i|7 •C,["Kr.t]wUr Ws[r Ur"' Ws  |f + s Ur Ws"' &-]        (61) 

"2 IT  =c2[Kr,s]uU
rWS[rUr-'ws  -|^-  +  s Ur W5"' -|^ ] (62) 

"2  aT' c2[Kr,s]wUrWs[rUr-'Ws   -|^-  + s Ur  Ws"' -J^-]       (63) 

In the above [K  J   and[K  J  are given respectively by 
equations 25 and 27. ' ' 

dU    dW 
Now Qf and Q f can be obtained from equations 20 and 21 respect- 

ively as follows: 

,  w   . r*     2        ,. .    .N   sinh Nk (i+z-7?) ..ni 
- (-g-)kcEN^aN(kA0)

N s|nhNk/     cosN0 

(3W       ,.      u   .   . _ v M2       /UA   %N   sinh NktZ+z-7?) M ni      ,c(-. -jj- =(1--^-)  kC^N2aN(kA0)     smh Nki    cosN«       (65) 

. y» . . _ v ..2      ,, A   »N      cosh Nk U+z-V)    „.    .. ni 
- (-*-)kc£ N8aN(kA0)        sinh Nki   Sln  N0 
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In addition, one obtains the following: 

(66) 
ax       c  at 

aw   _ J_ .dw. 
ax      c   at 

du _ dw . _ j_ _dw 
dz   ' dx c   at 

aw  . _ du_ . J_   du 
dz dx   "  c    at 

(67) 

(68) 

(69) 

Procedure for Computation 

The first operation to be performed is the evaluation of the co- 
efficients a , for example, the fifth order solution as outlined in 
Table V. This is done by selecting H, ji , and L, and perform computations 
to obtain the required a coefficients, water depth d and wave period T. 
These evaluations are then used to obtain expressions for the surface 
profile and the velocity potential. 

The next step is to select k(x -£) and k(z -17), coordinates of 
the undisturbed particle positions, and from equations 3 and 4 compute 
kx and kz the coordinates of the particles. The surface profile is 
given for z -17= 0. 

du      dw    du    dw 
A,,/   

The nS3£/step is to comPute u' w> 77 t "5T ,"aT T~FK  ' 
'dz '  andC'dz>  respectively by use of equations 20, 21, 64, 65, 66, 

67, 68, and 69. 

The horizontal and vertical components of u,w,-gy ond -gy- are then 
obtained respectively using equations (24, 25), (26, 27), (56, 58, 60, 
61) and (57, 59, 62, 63). 

Transformation of equations to the form of Stokes' 

The previous development resulted in equations in an unexpanded 
form. These equations can be expanded, using suitable approximations, 
and it will be shown that the expanded forms are identical to those ob- 
tained as outlined in Stokes' solution.  The procedure is to expand the 
following identities. 
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cosh Nk (i + Z-1?) = cosh Nk (d +z) cosh Nk {ZQ-7!) + smh Nk(d + z) sinhNMzo-7! 

sink Nk (i+ z -17) = smh Nk (d +z )  cosh Nk (z0-V) + cosh Nk (d + z ) smh Nk (z0-V) 

sink Hk£ s sinh Nkd   cosh Nkz0 + cosh Nkd   smh Nkz0 

cos Nk (x-£) = cos Nkx   cos Nk£ 4 sin Nkx  sin Nk£ 

sin Nk  (x-£) = sin Nkx    sin Nk£ - cos Nkx    sin Nk£ 

In the above equations the expressions involving k£    and k1? 
are expanded by series to as high an order as required,  and by the 
process of resubstitution expressions are obtained for k£ ,  k V ,  u/C 
w/C in the expanded form. 

For example,  consider the second order solution involving the 
expansion of equations 6 and 7. 

kVs" a, kA0   cos kx + k£s sin kx ] + a2 (kA0)2 cos 2kx -kz0 (70) 

k£s = o, X, (kA0) [sin kx-k£s cos kx] + a2 X2 (kA0)2sin 2kx (71) 

For the second order it will be seen from equation 54 
kz  « 4- Y, (kA0)

2 and from equation 50 that X » Y±  and X • Y « 
For°the Ihird order X„ * Y„ X, » Y„, but      x z 

2        2      3g       3* 
XI-YI [ i + (*v2 V] 
The first order solution of equation 71 is k £    « a X (kA ) sin kX, 

and is substituted into equations 70 and 71 to obtain1 the second order 
equations. 

k£s = a, X,  kA0 sin k*   + (o2X2 - y a,2 X,2) (kA0)2 sin 2kx (72) 

k% = 0, (kA0) coskx   + (o2- -g- o,2X,)(kA0)2 cos 2kx (73) 

Using a, * A      and a   • A     « 1 as given before, equation 73 for 
the surface pFofileTwcomes: 

*7S/A0= cos kx  +    3~ tona   kd     (kA0)   cos2kx (74) 
4 tanh3 kd 

which is identical to Stokes' solution 
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Consider now the second order solution for particle velocity 
for which from Table I 

f- = U-U2+W2 <75) 

-?-=W-2WU <76> 

To the second order the expanded forms of U and W (equations 20 
and 21) become: 

U   = ^jj^j [cosh k (d +z) cos k(x-Ct)+k£ cosh k(d+z) sink(x-Ct)     (77) 

- ki?   smh k (d + z)   cos k (x-Ct) | 

+ 2 o2 ( kA0)2 ^Ji^ + zl    cos2k(x.ct) 

and 

W = 8°j,^ [sinh k(d + z) sin k(x-Ct)-k£ smh k (d+z) cos k (x-Ct)      (78) 

— k^coshk   (d +z)  sin k (x-Ct)l 

+ 2c2(kA0)2    S,^,n
2
h

k
2

d
kd

+Z)     sin 2k (x-Ct) 

The first order solution for k£and k 17 for substitution in the 
above are obtained from equations 1 and 2,  respectively as follows: 

*t   = °.  <kAo>     C°S
s

h,n
kh(kd+Z)      Sinkx <79) 

k^=0l   (kAo)       ^"s
h
|nVk

d
d
+Z)      coskx ,80) 

Substituting equations 79  and 80 into equations 77  and 78 one ob- 
tains the following: 
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U   =  o,kA0     cosh k (d+z)  coshx  + 2o2(kAo)2   cosh 2k|l?+z)    cos2k(x-Ct) 
° smh kd * sinh 2kd 

4- a 2 ( kA   )2      I-cosh 2 k (d + z) cos 2 k (x-Ct) 
' ° 2sinh2kd 

and 
(8 

w»  a,  (kA0)   sinhk(d + z)   sin k (x-Ct)+2o2 (kA0)g  sinh 2ki<!+2} sin 2k(x- 
sinh kd £       u sinh 2kd 

- a,2 (kA0)2   8i2h
8,5iffid*Z)   sin 2k U_Ct) 

Substituting equations 81 and 82 into equations 75  and 76,  one 
obtains: 

t=°'kA°     "^nVkd^    cosk(x-Ct) (83) 

J   f     202 a,2 

sinh 2kd  1TTTT 1  (kA0)2  cosh 2k (d+z) cos 2k(x-Ct) 
sinh    Kd  j 

f = <"kA°     S,nsinh(dkd+Z)   ""Mx-Ct) (84) 

+ [smha2kd    ~   sm^kd  ] (kA0)2 smh 2k (d + z )  s.n2k(x-Ct) 

Using a    = A«„ and a   = A      =1,  as given before, equations 83 
and 84 becomi:      22 1        11 

(85) 

f •"•» "^M" «»-«.-e.)*f (>*.!• c°s
5,hnh

2rtV" -au-cti 
(86) 

f-=(kAo)  Smhk
h
(d'Z)   s.nMx-CM + j- (kA0)2   smh2k(d+z)   sin2k(x_ct) 

C smh kd 4 sinn* kd 

In general Stokes'  equations can be written as follows: 

_ Jl£ . I 0N. (kAo)N   co^NMyi)   sm Nk (x.ct) (87) 

-jj-  -   I  NoN'(kA0)N    C0S
s

h,n
N

h
kNgd+Z)    ^Nk(x-Ct) (88) 
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(90) 

(91) 

I 
M 

k7?s = X  bN   (kA0)N   cos Nk (x   Ct) 

It will be convenient to write 

a,' = I + al3 (kA0)2  +  al8 (kA0)
4 + 

a2' = a22 + a24 (kA0)
2  +   • 

a3' = a33 + a35 (kA0)2   + 

041 =   044   +  • • 

etc. 

b, = I  + j8l8 (kA0)2   + /3I5 (kA0)4   + 

b2= £22 + /324(kA0)2 + •• 

b3= £33 + £35 (kA0)2   + 

b4 = /344 + 

etc 

^ = y,  + y3 (kA0)2 + y5 (kA0)4+ (93) 

The procedure applied to the second order solution has been extended 
to the fifth order, using also the expanded relationship of tanh Nk/ . 
The results of this expansion leads to the following relations for the 
coefficients: 

TABLE    301 

/,    = t = tanh kd 

(92) 

a22 =   — 
3       l-t! 

4 t3 

B     -- a     +   J-   -- -3-t2 

^22      U22^     2t 4t3 

3 Q«-    1 t2 LP22        2t        +     Q22 t J 
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B     --a     + -L + -L _^2L +   J    -      l+.t* 
P33      Q33 +   8    +   2        t       + a. 2   "22      t 

6-t2 
ai3   *   ~  P33  ~ g t4 

£,3  -    -    £33 

v     -   /5          n     x   5 ^22f      ,   n        l-t2 

/3     "   P|3   "   QI3   +   "g" 2~~     +   a«    TT~ 

44-5 + t2[^33     2t3      T   48t3     T«M       4f2 

+ fl        fl l~3t2     ,    , _ l-3t2-2t4    -   _    g    l-2t2+t4  1 
+ °22 £22 -gji- + 3 a33    t3(3 + t2)   + a222  4^3—J 

fl   = a    + ± B   + -L -^5- +—!— +-122- + a     fl       ' + f2 

P44    "44 *   4  P22 +   2       t ^8? 2 22 ^22       2t 

x *« l+3t2 

+   3Q33       2t(3 + t2) 

47-29t2 3-5t2   ,,    ^0,^0        7+3t2 

a24 = 2a22 a,8 +     96f3 fjj— (al3 + /333) + 022 —— 

4.P     l-t2   .  .      l + llt2-6t4  . „. l-t4      , „   ,„    .0  .J+JJ 
+ P33-2fF  +Q22  ft* +3Q33     t3(3 + t2)   + °22(ai3 + PW ~f2~ 

O. „       fl I + t2 „     2       l-t4 
+ a22 p22 —g-j—  — a22      2f3 

£.«"aM + 2a18 (i9..-att)--2a±itt.  4  -i- /322 + l2T 

+ X    ^33      +  „      + ,„ I +3t2 

+   2   __    + a22 + 3Q33     2t(3 +t2) 

_     .    5 +I0t2+t4   [a       l-t2   ,   n       l-t2    .„     o       l-5t2 

55 "    8t2(5+3t2)    LP" ~i6*T + ^44 ~TT   + °22 ^22 ~4 

+ a     B       '~3t2    1 a       7-l5t2    • , l~4t2   •   3 a    Q     l-6t2-3t4 

+ 022^33 ~2t— +a22    48t       +3a« 3 + t2    +T°33^22   t(3 + t2) 

j. o       l-4t2-9t4     .     3    „     „ l-2t2 + t4   "1 
+ a44       t(|+f2)       +    "Y   °22 Q33        t(3 + t2)       J 

B    -a     + J_ fl   2 + _L fi    + _i_ + _L   &4     .  j_    P22 
P55 - a55 +   8   Ps>2   +   4   P33 + 384   +   2        t        + 7?        t 

+ a22 £22 + a22/J33 —g-j— + a22   |2f     + -g- a 

x   3    «      /5        I +3t2      .    rt I + 6t2+t4 

+  T   °33  P22      t(3+t2)     +    °44       2t  (I +t2) 

33 
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a36 = 3a33a13 + ^[1fe + ^±^+(^4-2^2A3)
Jif- 

+ i #22
2 t« + i833 + #44±|f +/3MiL±iL + #22 «n+&i. t 

+ (a24-2a22al3) ^=f^- - a22 (a,3 +#33)-
L^4-L-+ a22 #22   7+

4
5f2 

4.«      l9-"t2   .    3   _      35-39t2 l+!2t2+7t4   . -        .       , a   .J+3t2 

+ 3  a     &    t   l+3t2      _3_ n    fl      l+2t2-3t4 2    l-6t2+5t4 ] 
+ Ta33^2tT+7? 2~  a22Q33      t  (3 + t2)     + Q• ^i J 

fl            «         _i_  , „      I fl          n     \       QI3 + #33     .     #24-2 #22013   _ O^ , .   Q    J+t P3S 
=   °35   +  3a,3(/333-a33)-      l0  4 + •= £•= 2^^I3+P33'—f 

•     024-022 013     l + t2     ,      I     fl       ,     I    ft   2  •       5 •      I       #44     •     3       #2! 
+ 2        t 2   P«+  8 Pz2 + 384  +   2       t     +  16       t 

x„    fl      x «       I +t2   .   9   _      .   _        I +6t2+ t4 

+ a2zPz2 + a22 —2f"f— + "4" o33 + a44     2t (I + t2) 

a,.--{iSM+ft.-3al,(/3„+a1,)-A(al,+j8w) +    A*"**" a« 

,5,1       #22     .     I     fl    2    ,     I     fl      .       024-2022013 I + t2 

T92       "4   ~T~ + T ^22 T P33+ 2 t 

_  a22(#33+0|3)       l+t2      .     9 Q        , fl l+t2 
 a 2*    —^—  +  za22 p22 •+• a22p33    gt 

x „       l + t2 ,   9   _     x  3   „     p        I + 3t2     \ 
+  a22   ~3T" + "8    Q33 +   "2    Q33 P32       t(3xt2)      J 

A3   =-[#35+    #SS] 

y5 = 2al3y3 -+2- (a,s+ #33) + (#24-2#22 a13)  -^f^ + 1
S|^- 

+ |(^i) #22+ | #222 t2 +  a24-2
t
az2ai3 - o22(a13 + #33) ±f£ 

+ o22#22(2+t
2)+o22#33-^+o22^+^ili + a„  Jf^i 

+ 3a33 #22 
l~t

6
(
t
3

2;3
2

t
)

4 + \ #22 (a,3 + #33) t 

,     _        I + I0t2+5t4     ,   „   2   I + I4t2+ I7t4 

128 °33      2t(3+t2)        +  a22 4t^ 

Using kz    as determined,  etc. 
o 
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„     .   .   ,. „   ,2    tg-l    ,   ,,,,  t4r l8+63t2-72t4-59t6+26t8+24t10 1 ,, 
K=l + (kA0)    —g— + (kA0r[ ^ja J ( 

The above coefficients may be solved  conveniently in consecutive orde 
For example, for deep water t = tanh kd = 1, whence, 

y, =i, a22 = o,   £22 = \ 

a33 = 0,  £33 = -| ,  al3 = -i , /3I3=--| , 73 = I,  a44 = o,   &4= y 

a24"  g   »    "24 "   3    '    °55 " U>    P55      ^34   >     U3S        |2   '      "35 128 

a    -_ J-      fl    - - -2-li-      y   = 1       K - i UI5 "        |g   i    Pl5 |92   »      '5 2' " 

Loss of Accuracy in the Expanded Porm 

When the exact solution of the wave problem to a particular Mth order 
is expanded to obtain the Stokes' solution to the same Mth order there will 
be a loss of accuracy. The greatest errors will be with the higher order 
terms. The first term will have minimum error. The reason for the errors 
arises from the fact that the coefficients a of the series (either the 
expanded or the unexpanded form) are evaluated on the basis of the unexpandec 
form. The above statement appears somewhat difficult to understand if one 
inadvertently considers Stokes' solution to be in an exact form to the Mth 
order.  If this is the case, then Stokes' form must be expanded along the 
free surface (which results in the unexpanded form) prior to substitution 
into Bernoullis' equation. This operation results in an evaluation of the 
corresponding coefficients based on the unexpanded form, but are then ap- 
plied incorrectly to the Stokes' or the expanded form. 

For example the velocity potential component for the Mth or last 
term of the Mth order, for the unexpanded form and Stokes' form are res- 
pectively as follows: 

- JL&L. = oM (kA0)
M cosh M^hZ'm      sin Mk(x-Ct-£)      (95) 

C sinn MkX 

and 

_ Ji&L = a  . (kAo)M   C0S
h

hMkd     sin Mk (x-ct) (96) 
C M sinh Mkd 

Along the free surface Z = V = V   and the above equations become 
respectively: 

- 4^ • •« lk4»'" -Mf s,n Mk'"-CK' l97> 
- 4**- •<.«'<"•'''      ^ U• ^'     .lnMM»-C.) (98, 
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For evaluation of the coefficients of the Mth or last term, the 
expansion of cosh Mk (d +17 ) will be cosh Mkd which is the same idea 
asz=17=7? = 0. Any consideration of finite 7]s  for the Mth term of 
Stokes' Mth order results in M + I , M + 2, etc. order terms, which are 
neglected by the mechanics of the solution. 

It then follows that the error in the Mth term of Stokes' solution 
will be in proportion to: 

cosh Mk (d + z ) 

cosh Mk (d + z -1) 

Along the free surface the error will be 

cosh Mk (d +%) 
cosh Mkd 

and along the sea bottom there will be no error since the 
above ratio reduces to unity. 

If one considers the last term of the third order wave theory, M <= 3, 
and for example, the wave H = 35 ft., T = 12 sec. and d = 85 ft., then 
one obtains L = 581 feet, 1)     « 22.1 feet at the crest and 17 - H = - 12.9 
feet at the trough and from ?he above ratio: 

cosh Mk (d +%)  „ je^ = 
cosh Mkd 7.869 

and 

y-§§§-  =     665    at   the  trough 

The deviations of the above ratio from unity reflects considerable 
error.  For the  unexpanded form the above ratio is always unity. 

For the M-l or next to the last term of the Mth order, the percent 
error will be less since the expansion of this term for Stokes' solution 
will be cosh f(M-l) k (d +1)   )] = cosh [(M-l) kd] + (M - 1) Tk1?  sink 
(m-l) kd]   L s J       L       J L   s 

In view of the above considerations it appears that the use of 
Stokes* higher order solutions should be limited to low wave steepness, 
i.e.1?  small compared with d. 

s 

With the aid of electronic computors, the unexpanded form given 
in the present paper can be utilized easily for computing wave properties 
and thereby obtain greater accuracy theoretically than by utilizing Stokes' 
equations. 
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SUMMARY AND CONCLUSIONS 

A theory for waves of finite height, presented in this paper 
is an exact theory, to any order for which it is extended. Two sets 
of equations are given in an unexpanded form, when upon expansion 
represents an approximation to the exact theory, and this approximation 
is identical to Stokes' theory extended to the same order. The waves 
are irrotational. 

Consecutive order of equations are given which can be used, either 
by the long hand method of computation or by use of high speed computors 
for computing the wave properties. These equations have been worked 
out to the fifth order, both in the exact form and also the approxi- 
mation or Stokes*  form. 
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APIEHDIX 

SYMBOLS 

A = H/2, half wave height 

a = a a , a etc. Coefficients of velocity potential series 

B = B  , B , etc. Terms for the Bernoulli Equation 
S    11   Xo 

C = L/T Wave celerity 

d s Undisturbed mean water depth 

P = F , F , F , etc. Higher order terms for wave celerity 

g = Acceleration of gravity 

H = Wave height, vertical distance between crest and trough 

k = 2-rr/L, Wave number 

K = Constant for Bernoulli Equation 

X -  Parameter related to mean water depth 

L = Wave length, horizontal distance between two successive wave crests 

M = Mth term of the Mth order 

N= 1, 2, 3, 4, toM, Consecutive terms of the series 

p = pressure 

R = Remainder terms in expansion of equation for particle velocity 

r = Exponent 

s = Exponent 

T = Wave period 

t = time also used to denote t = tanh kd 

u = horizontal component of particle velocity 

u = u at the free surface 
s 

U = A form of notation -used related to u for higher order terms 

w = vertical component of particle velocity 

ws »= w at the free surface 
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W = A form of notation used related to w for higher order terms 

x = horizontal coordinate of particle 

X„ = X, , X„, etc. = 1/tanh Nk,/ 
N    1   <2 

Y = Y , Y , etc. = l/tanh Nkd 

z  -  Vertical coordinate of particle 

z =i- d 
o 

T? = Vertical displacement of particle from its undisturbed position of 
rest 

f)   = V for the free surface 
s 

£ = Horizontal displacement of particle from its undisturbed position 
of rest 

£ = £ for the free surface 

P  = density 

O = k(x - Ct) 

Q1 = k(x - Ct - £) 

V2= Operator 

d =  Notation for partial differential 

<j> = Velocity potential 

y = Stream function 
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