CHAPTER 9
A THEORY FOR WAVES OF FINITE HEIGHT

Charles L. Bretschneider x
ABSTRACT

A theory for waves of finite height, presented in this paper, is
an exact theory, to any order for which it is extended. The theory is
represented by a summation harmonic series, each term of which is in an un-
expanded form. The terms of the series when expanded result in an ap-
proximation of the exact theory, and this approximation is identical
to Stokes! wave theory extended to the same order. The theory repre-
sents irrotational -~ divergenceless flow. The procedure is to select
the form of equations for the coordinates of the particles in antici-
pation of later operations to be performed in the evaluation of the co-
efficients of the series. The horizontal and vertical components of
these coordinates areM given respectively by the followings

kx =k (x=€) + Y (KAg)V Losh NULE 2-7) g0y (c-cr-¢)

, sinh Nk.Z
d M N sink Nk (£+ z-7)
sin z-
= - A -~ Ct~
kz=k (z m+$(k o) Ty cos Nk (x &)
where

x and Z are the coordinates; k = 2n/L, wave number; Ao= H/2, half
wave height; C = L/T, wave celerity and t is tind* Lis a parameter re-
lated to the undisturbed mean water depth, d. The constant term kzo =
k (L~ d); f and M are the horizontal and vertical displacements of the
water particles from their respective position of no motion. aN = al,
a2, a_, etc., coefficients of the series as N =1, 2, 3, etc, to N =M,
From %he above equations it is possible to deduce the expressions for
velocity potential and stream function. The horizontal and vertical
components of particle velocity are obtained by differentiatingf and
Mwith respect to time. Along the free surface z -7= 0 and z =" and
all expressions reduce to simple forms, which in turn saves consider-
able work in the evaluation of the coefficients. The coefficients are
evaluated by use of Bernoulli's equation. The final form of the sol-
ution is given by two sets of equations. One set of equations (same
as above) is used to compute the particle position and the second set
(the first time derivatives of the above) is used to compute the com-
ponents of particle velocity at the particle position. That is, the
particles and velocities are referenced to the lines of the stream
function and the velocity potential, Expanding the two sets of equat-
ions, by approximation methods, results in one set of equation for
computing particle velocity and no equations are required for the part-
icle position.The unexpanded form requiring two sets of equations,

*Hydraulic Engineer, Beach Erosion Board, U. S. Army Corps of Engineers
*% Sge Appendix for Symbols, p 182
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A THEORY FOR WAVES OF FINITE HEIGHT

being an exact solution, is more accurate theoretically, than the

Stokes or the expanded form to the same order, Coefficients have

been formulated for all terms of the order one to five for both the
unexpanded and the expanded form of the theory, and are presented

in tabular form as functions of d/L, as consecutive equations.

INTRODUCTION

Since 1847 when Stokes first presented his classical work on
the theory of oscillatory waves, a number of authors have contri-
buted to this fascinating subject, The reference list, which may
not necessarily be complete, is given at the end of this paper, Ex-
cept for the fact that the various developments given in these re~
ferences entail certain difficulties and in some cases minor errors,
no further discussions will be made thereof,

There is much to be discussed in the present paper and the
usual formality of elementaries will be minimized, The inertia of
the air and the atmospheric pressure along the wave surface can be
neglected; i.,e, these quantities are zero with respect to themselves,
and the pressure within the fluid is assumed equal in all directions,
There is to be no flow across the boundaries, the sea bed being rigid,
flat, and impermeable, and the fluid is inviscid. The waves are long
crests and x , Z, t represent the two dimensional coordinates with
respect to time, X is the horizontal direction measured from the crest,
positive in the direction of wave propogation, z is the vertical co-
ordinate measured negative below and positive above the undisturbed
water elevation, The undisturbed water elevation is the mean water
depth, and is that level the water seeks when all wave motion is ab~-
sent, Finally the flow is irrotational, and since divergenceless, is
Laplacian,

The equations by which the motion is described are as followsg

pope-p §E -4 e {(32) + (32))

2 2
e
f%gl =0 at z=~4d

9% 9o 39 b ]
+ Ix O az oz = 0, when p=0

af
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COASTAL ENGINEERING

Where ¢> is the velocity potential, g acceleration of gravity;
P density of fluid; and p the pressure.

The first equation is the usual equation of hydrodynamics, the
second specifies irrotational flow, the third specifies no flow across
the sea bed, and the fourth specifies no flow across the free wave
surface,

Coordinates

The coordinates of the particles of water can be represented by
a set of equations around which a theory can be developed, If the
equations are selected in anticipation of later operations to be per-
formed, then one might be able to minimize the work envolved, In
the presence of wave motion the horizontal and vertical displacements
(‘f,”)) of the water particles from the position of rest or the position
of no motion can be represented respectively as follows:

M
N -
kf:Z:aN(kAo) cosh ?i':"("g:lz k) sin Nk(x- Ct-¢§) (n
M
. N _sinh Nk (£+2z-7) -
k7 ;aN(kAo) i e 7 cos Nk(x-Ct-§ ) (2)
{ See Figure |)

It then follows that the x, z coordinates of the particles are
obtained from:

M
- N cosh Nk(£+2z-7) _.
kx = k (x— -
x = k (x E)+;oN(kAo) NN Y. sin Nk (x-§) (3)
and
M
- - N sinh Nk(£+2-7)
kz =k (z-7) +Z|:ON(kA°) <inh NkZ cos Nk (x-¢&)

In the above equations

2 Ao = H, the wave height, vertical distance between crest and trough

k = 2v/L, the wave number
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o

Porticle position ot rest

NOTE.
No wave motion

Porticle position displaced from
(X—f) position of rest

(z-1)

d 1 Particle position at rest

NOTE.
During wave motion

FIGURE I. SYSTEM OF COORDINATES
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COASTAL ENGINEERING

L is a parameter related to the undisturbed water depth.
zo = 1- d is a constant to be determined
x,z, are horizontal and vertical coordinates of the particle

f » N are the horizontal and vertical displacements of the particle
from its initial undisturbed position of rest.

C = L/T is the wave celerity
L is the wave length
T is the wave period

a.=a, a, a,
tHe se%iesz 3
N=1,2, 3, «uaee M (Mth order) corresponding to each of the above
coefficients,

ceesess By (Mth order), consecutive coefficients of

The parameter,zis related to the depth d according to
L
1
a=t [T (s M) o=tz (5)

where ﬁs is the surface elevation with respect to the undisturbed water
elevation, and kz° =k(f-d) . (See Figure 1)

The coefficients a_, with the corresponding subscripts represent a
convenient means for keeping track of the various terms of each ordery
i,e,, 2, is the first order term, a, and aﬁ are the second order, 3z,
ai and a (az) are the third order t&€rms, etc.

One of the conveniences of the system of coordinates used in the

above equations is that the free surface conditions are obtained by
getting z - 7 = 0, whence

M
N
k7, = 2': ay (kAo) cos Nk (x-£) — kz, (6)
where the constant kzo is required as shown' later

M
= - N l
kxg = k (xg €s)+§'j oy (KAg) =y sin Nk (xg=§,) (7)

Horizontal and Vertical Components of Particle Velocity

The horizontal and vertical components of particle velocity may
be obtained respectively from:
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u__1 98¢ _ 98 _ am (8)
c C ot ox Oz

and

~ao9m _ 9 anm
[ TR PR (9)
whence

N cosh Nk {(£+2z-T)
sinh NkX

sinh Nk {(L+z2-7)
sinh Nk£

cos Nk({x-Ct-§)

€ =U-8) 2 NaylkAy)
(10)

+ %Y Naytkag)" sin Nk (x- Ct=¢)

and

N sinh Nk{f+z2-T)
sinh Nk £

cosh Nk (£+z-T)
sinh Nk £

sin Nk (x-—Ct-—f)

%-‘-“_%)ENON('(AO) (i)

- L3 Nay(kay)" cos Nk (x-Ct =)

The horizontal and vertical components of particle velocity are also

given by: _a_é
u.__ b S .
w__1 0% _, 129
c " T3, t<T *5-!1 (13)

Where ¢>and V’are the velocity potential and the stream function
respectively. It is seen from Equations 10 and 11 together with
Equations 12 and 13 that the velocity potential and stream function ex-
cept for arbitrary constants will have the following forms:

M
_k® . N cosh Nk (f+z+¥/C) . _
o z ay (kAg) onh Nk 2 sin Nk {x Ct+4’/c) (14)

M
_%\g o (kg i Nk Lt 2 1¥/0) o0 i (x-cte B4)  US)
|

sinh NkZ

Proof of Irrotational Rlow

Equations 10 and 11 represent irrotational flow irrespective of the
actual values of the coefficients. That is:
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V2¢=%:—+%“z"—=o (16)

Performing the above operation, it is found that

N cosh Nk (,f+ z-7

Ou , 0w _ _  OJu , Ow
axtor TGt e Y Na, (kAo) T cos Nk (x- Ct=§) -
Ow _ du N sinh Nk (L+2-7)
+(ax az)z NGN (kAo) S|nh Nkl sin Nk (X-Ct-g)

The above does not yet prove that V2¢ = 0 until the following
is evaluated

a—"i~a—“=-(g"—‘—g—;‘)ZNaN(kAo)" cosh Nk (f+z-T) cos Nk (x- Ct-£)

Ox 0z Ox sinh Nk£
du , Ow N h Nk (£+2 ) ter
sin -n -Ct -
_(_._ax +._az ) E Na,, (ko) snh N D sin Nk (x-Ct-§)

For the summation terms of equations 17 and 18 to exist, the only
possible solution of the simultaneous equations 17 and 18 is

Qu , Ow_ _ Ow _ du _
ax+az = 0 and Ox =0

Q

4

Q

therefore V2 4> = 0

The above proof is more easily verified by performing the above
operation on the equations given in the next section (Table I, for example).

Power Series Bquations for Particle Velocity

In the development following it will be convenient to use

k (x-Ct-&) = 8 (19)
and /

U - Z Nay (kAo)N cos:inﬁ:\k'(\llk-}z-”)) cos N 8! (20)
and

W 5 oy tkat SIRMLEEE !
whence
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cEt-EyU+ ¥ W (22)
and

The simultaneous solution of Bquations 22 and 23 can be made by the
process of resubstitution to as high an order_as required where the Mth
order will include all terms of U, W, and U W , where p = 0 to M,
q=0toM, and r + s =1 to M,

The process of resubstitutions leads to the following terms:

TABLE 1
M u/C w/C
[ u w
2 -u?+w? -2wu
3 ud-3uw? -w3+3wu?
4 -U%+e6U2W2- w* 4wW3U-4wus
5 us-1oudw2+suw? ws-1ow2 U2+ swu?
6 —6U%+ I15U*w2- |5 U2wW* we ~-euw® 20w3ud-gwus
7 U'-21Uu%wW? + 353 w4-7U W —~W7+ 21wl U2 —35W3 U4+ 7TWUS

It will be seen that a general expression can be written for V/C,
having the following power series equation:

% - [ Kr,s]uUr w* (24)

where

% (r+s)!

1S {25)

[Kr,s]u= -1 -0 (=1
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for r=0,1,2,3,4 } { r=0 - }
o {s 0 68 except for s=0 Ko,0 = O

and M = r + 8

For example, consider the 8th order (M = 8), in addition to
those terms for M = 1 through M = 7, there will be the 8th order
term for the following combinations of r,s = (8,0);

(6,2); (4,4); (2,6); and (0,8), whence from equation 24 the
8th order terms for u/C are

—~ U+ 28U%wW2- 70U* W+ 2807 W8 - W@

Similarily for the term w/C the power series equation:

2 ke ]wUr A (26)

where S
sy (o 2 Artsd
[Kr,s]w'( b)Y (-1) rl sl (27)
for
r=0,1,2,3,4 }
L M=r+
{s=|,3,5,7 res

For example, the 8th order term will have the following
combinations of r,s = (7,1); (5,3); (3,5); and (1,7), whence from
equation 27 the 8th order terms for w/C are

-8U"w + 56U%W3 - 56U w3+ guw’

Thus equations 25 and 27 can be used to obtain all terms
from the first order to the Mth order respectively for u/C and w/C

Bernoulli's Equation

The problem of wave motion can be reduced to one of steady
state by superimposing a steady current on the wave motion equal to
the wave celerity but of opposite direction. This operation, known
as the Rayleigh principle, leads to Bernoulli's equation applicable
along the free surface, where it is assumed that everywhere along
the free surface the pressure is constant or is zero with respect
to atmospheric pressure, whence

(ug—C )2 + wg? + 297 = constant, (28)

where the subscript s refers to the conditions at the free surface,
Equation 28 can be written as follows;

u 2 Wg 2 2g7
(—C-s-—l) +(—C§) +_(?§- = Kz constant (29)

or solving for k’?s
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It will be convenient to define the Bernoulli term as

2 2
o iRt

Along the free surface equations 20 and 21, z~ 7 = 0, whence

Ug= T Noy (kAg)" Xy cos NG (32)
and

W, = T Nay (kAg)" sinNG' (33)
here Xy = !
" N * TonnNkZ

From Table 1, one may obtain the Bernoulli term B which leads
to the following terms: s

TABLE II1
Order (M) Bs=_l-‘c_s____|2_[(‘%s)2+ (w-ci)a]
| Us
2 —3/2 UGB+ Wg?
3 2Ug3~2Ug Wg?2
4 ~ 5/2 Ug* + 5Ug? Ws2— 5 Wg#
5 3US—10UsBWs2 + 3Ug Wg4
6 ~7/2 U+ 35/2 Us® W —21/2UsP Ws*+ 5 Wg®
7 4UgT —28USS W2 + 28U Ws® - 4Ug Wt

It will be seen that a general expression can be written for
Bs’ having the following power series equation:
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r S
B = [Kr,s]BUs W, (34)
where )
S
sty (o33 rts 4+ 11
[K,,S]B =" (-2 SRR (35)

]
r=0,1,2, 3, 4,5 ...... r=20 _
for {5 =0, 2,4, 6, 8.verenernn except for s =0 i KO,O Y

For example, the 8th order terms will have the following com-
binationsof (r,s) = (8,0); (6,2); (4,4); (2,6); and (0,8); whence
from Bquation 35 the 8th order terms for Bs are:

- 9/2 Us® + 42Us® We? - 63 Ug*W B Us? Wb — 5 W,

Thus Equation 35 can be used to obtain the Bernoulli term B
to as high an order as required, The term B_will have an expanded
form as follows: 8

Bs = | By+ Bzl kAg)® + Byg(kAg)* + B7(kAQ®+ - ] kAo cosB'

=132.‘,+ B,y (KAg)2+ ByglkAg)+ - ] ( kAg)® cos 28"

[ Bagt Bag (KAG)® + Byr(kAQ)* + - | (KAQ)® cos 38

[Byy+ Bug (kA2 + -+ ] (kAG)* cos 48 (36)
[Bas + Bsr (kAQ)? | (KAQ)® cos 56

+ + + +

A
+ Byt Byyaz (KAQZ+ - ] (kAo)’ cos JO'

+ By (kAo cosMB' + R

In the above, the first subscript refers to the terms correspond-
ing with identical (kA W Cos 78" J being the general term, The
second subscript refer® to the order. For example, B is the fifth
order term for Cos §' , and B5 is the fifth order t%§m for Cos 58
R is a constant and represents ghe sum of the remainder terms for which

no Cos N 9' exists,

Procedure for the Bvaluation of Coefficients

The coefficients a_, a,, a,...... &, must be evaluated such that
the surface boundary coifiditions  are satisfied, The surface profile
elevation with respect to the undisturbed water level is given by

Equation 6,
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The surface boundary conditions are satisfied when Equation 6
is made identical to Equation 30. To whatever order is required
Equation 30 is a means by which the solution is obtained. Incidentally,
such a solution is similar to a least squares solution in statistical
theory.

It will be convenient to use an expanded form of Equation 30 as
follows:

k"]s=z ay (kAo)N cos Ne" where

Q, = :A,,+ A3(kAgIZ+ A5 (kA% + A7 (kAQS + - ]

aps [Age+ApglkAg)? + Ayglkag® + ]

a3 = | Agg+ Agg (kAg)Z + Agr(kAg)® + - ] (37
Qg = i/.\44 + Ags (KAQZ + ]

ag = :A55+A57 (kAg)2 + - ] + = kzgq

The wave height H = 2A is obtained from the difference between Tlg
at 0= 0 and "M at 6 = m, afld since Al will always be equal to unity as
long as H = 2Az, whence from equation %7,

0= (Ajz+ Agz) (kKAQ)2+ ( Agt Azst Agg) (kAQ)* (38)
+ (At Agzt Agrt Agg) (KAQ)®
Equating to zero terms of (kAo) , one obtains the following:

Bz =Rss

A15= —(A35 + A55) (39)
Ay, = =gy, Agy + AG,)

etc,

The wave celerity can be expressed as follows:

2
K = Fi+ Fy (KRG Fy (KAQI+ Fy (KAQS +-ovn oo (40)
Using Bernoulli's Equation 30, together with Equations 37, 39, and
40 and equating like terms of CosNO one obtains the following set of
equationssg
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A+ Az (kA 2+ Ag(kALY + ] -
F| + F3 ( kAo)2+ Fs(kA°)4+ ‘] [ B” + B|3( kAo)2+ B|5(kA°)4+ ] s O

A22+ A24(kAo)2+ ]" [F|+ F3 ( kAo)a + ][822+ 824( kAo)2 + - - ] 0
- (41)
Asst A g (kAQ) + ]—[F.+F3(kA°)2+ --][835+ Bas(kAg)? + ~]=o

e J[re ] [ar ]os

efc and — kzg = [Fu + FalkAo)? +Fs (kAg?+- ][—-—Kz" + R]

The procedure is to expand each of the individual equations
and then equate to zero like terms of (KA ). It will be convenient
to present the higher order terms of the R's and the F 's in terms
including the B's terms and the lower order term of A's and F's,
Using Equations 41 (and also those of Equation 39) the results are
summarized in Table III,

TABLE III

Term Source Order
Ay= H=2A, |

Fi= 1/8y Eq 4! | ond 2
Age® Fi Ba Eq 4l 2

Azz= F| Bss Eq 41 3
As=-Ays Eq 39 3

Fs= AgF, — BjzF/? Eq 4! ' 3and 4
Aga™ Fi By Eq 4l 4

Azq= Fy Bagt F3 Bop Eq 41 4

Ags= F| Bss Eq 4! 5

Azs® F| Bas+ F3 B33 Eq 4 5

Aig= = Azs— Ass Eq 39 5

Fs = AigFi —F2Bis~F, F3B3 Eq 41 5ond 6
Age* F| Bge Eq 41 6

Age= F| Bagt F3Baq Eq 41 6

Age= F| Bagt F3 Bagt+ F5 Baa Eq 41 6
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The above scheme can be carried to as high an order as required,
merely by writing down the additional terms. For example, the seventh
order terms are obtained from Bquation 41 as follows:

Agp = BBy

A

57 = F1Bs7 * FiBss

A BB _ + BB __+ FSB

37 137 3735 33

A

+ +
17 = F1Byp * F3Bys * FiByg ¥ BBy

or P7 from the last equation using Bll = l/F1

is as follows:
2
= - - F B - BRFEFB
Fp=F A= F B, = FiFB s~ FiFsPs

Similarily the eighthorder terms can be written down directly
as follows:

A E B

88 1 388

A

B +
68 P1 68 F3B66

A BB _+EFB _ +FB

48 148 346 544

= + + + +
A B.B B_B B B P F7B2

28 1728 3726 5724 7 2

Thus all expressions presented (Tables I, II, and III) can be
carried to as high an order as required, with no difficulty whatsoever,
These relations are convenient working parameters for the actual
solution to a particular order,

Example: Fifth Order Solution

In order to continue the solution to any particular order, it
is necessary to express the B~ terms in terms of a_, using Equations
32 and 33 and equations 34 and 35 (Table II). It will be seen from
Table II that there will be cross product terms involving CosNe’ and Sin
No} and it will be necessary to replace these cross product terms using
trigonometric identities. Pgr exgmple, Ehe fifth order solution will
require the terms of U , U ", U, U W “, etc. be determined, Using
trigonometric identitief thise t&rms fngluding all orders from one to
five are as follows:
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Ug= a1 X (kAq) cas 8' + 2a,X, (kAg)2cas 28" + 3a5 X5 (kA cas 38"
+ 40,4 X, (kAQ)* cas 4 8' + 5agXg (kAQ® cas 58"
U:= 3 92 X2 (kAg)2+ 202X,2 (kAg)*
+ |20, X, a5 X, (kAQ)? +60, X, asxs(kA°)4] (kAg) cas 8'
+92%2 +  3aq X, 05X (kAa)z] (kAy)? cas 26"

+|20,X,0, X, + 40, X, 04x4(kAo)2] (kAg)® cas 38"

+
1T /1 /)

+

20,2X,2+ 30, X, ag X3 ] (kAg)?* cas 4 8'

+

4a, X, 0, Xq + 60, Xp04 x3] (kAg)® cas 58’

U2=% a,2X20, X, (kAg)®

-

-+

2 03%X3 (kAg)® + (60, X af X2+ & o Xaz X3) (kAo)“] (kAgq) cas |

+[302X,20, X, (kAa)z] (kAg)? cas 2 8"

+ [+ 92X+ ( 2 02X20;5 X3 + 30, X, 0,2X,?) (kAq)z] (kAg)® cas 36’
+ |4 92X2aq, xz] (kAg)* cas 4 '

+ 30, X 02X 2+ 2 a2 X2a, xs] (kAq)® cas 58"
U;:% 0,* X% (kAg)* + [ 403X30, X, (kA°)4] kAq cas §'
+ 5 a,*%X,* (kAg)* cas 28"
+ 302 X,30, X, (kAq)® cas 38’

| |
+ 4 0* X% (kAg)*cas 40 + 0,3X,30, X, (kAq)® cas 58

U= 3 0,5 X3 (kAg)® cas 8'+ & o8%5 (kAg) cas 38'+ 1 o8 X,5(kAy)® cas 58
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Ws2= ‘Ia" °|2 (kAo)z + Zﬂaz(kAo)4

+| 20, 0, (kAG)2+ 60, 03(kA0)4] (kAo) cos '

-
+| 3q, ag (kAgP~ + 0,2] (kAg)2 cos 2 8'

+:4a, aq (kA Q)2 - 24, 02] (kAg)3 cas3 8’
—[2022+ 3q, 03] (kAo)* cos 48"
—[40, aq + 60203] (kAo)® cos 58’
Ws4=—g- 6, (kAg)? + 2a,2 ap (kAg)® cas B’
— 3 af (kAg)* cas 28'-3q,30, (kAg)® cas 38"
+ 4 a4(kA)* cas 48" + a3a, (kAg)® cas 58"
UsWs2= a2 X; ap (kAg)4 = & 0,2 05 X, (kAg)*
793X, (kAg)2 + (2q, X, 02+ £ 02X, 03 - & 0,203x3)(kA°)4] (kAg) cas 8'
+] 02 ap X, (kAo)z] (kAg)2 cas 2 8"

!
a,2X, 0, + 5 a2 a, Xz] (kAg)?* cas 4 6'

+[(% a2 a3 X3 + 20, 02X, — a; X, a,2) (kAg)2= % a2 X, ] (kAg)2 cos 38"

a X, 0.2+ 3 a2X, a3 + 20, 02X, + % a2 ag X3] (kAq)® cas 5 8'

UsZWs2 = % a* X2 (kAg)?
+[a,3 X2 a, (kAo)“] (kAo) cas 8'
—[( —%— 03X2 o0, — -—'2— 03X, ap X, ) (kAo)a] (kAg)® cas 3 8'
—[—é— a? x.2] (kAg)* cas 4 8
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- [% a3 X2a, + ‘Iz‘ a3 X; @, Xz] (kAg)® cas 5 g'
U3 W,2 - [%0,5 xls(kAa)‘] kAg cas 8'
_[TE' a,% X5 (kAo)z] (kAg)® cos 3 8'
1= a 5x,5] (kAg)® cas 5 8
Us Ws“[—é‘ 0’ X, (kAo)“] (kAg) cos §'
= 95X, (kAg) ] (kAg)® cos 3 8'

-[
[—'6- x.] (kAg)® cos 5 8'

Using the above expressions, together with Table II, it will be
convenient to summarize the results in Table IV
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TABLE T ~— Terms of Bg to Fifth Order

R ~Terms
(kAg)2cos O  (kAy) cos8' (kAg2cos28' (kA )3cos 38" (kA *cos 48' (kA8 cos 58
- 3/4 ofXx? a; X 20, X2 3a3X3 404 Xq Sas Xg
1/4 a2 - 3/402X2 -30, X, 0, X, 30,2X,2 60, X, 04 X4
(kAoPcos8' —1/4 q,2 — a, 0, ~9/20,%05Xs —9 02 X203X3
-30, X, 05X, 172 a3 X3 -ap? - 20 04
a, ap 172 a3 X, -3/240q, a3 - 3az03
3/2 a3 X3 3a2X2az Xp 64, X 022Xp2
=172 03X, 202X, a, 9/2 0;2X 203 X2
0,20z X, 240, X, 052
(kAg)* (kAg)8 cos B' (kAg)* cos28' (kAo)®cos38' -5/16 aX* 3a2X, a3
-3 02X3%2  —90, Xp 03Xz —-9/20q, X, 03Xz —6 0, X, 04Xq4 -5/8 a*X,2  4aq, 02X,
P 3 0z 03 3/2 a, a3 2 0, a4 -1/16 q/* 3/2 a2 a3 X3
302X20;, X, 120, X, 02X,2 602X20, X,  90,2X,205 X3 -5/2 a2 X3a,X
- 202X 0, 9/20a2X%X2a3X3 —2 q20; Xz 6q X afXz? -5/2 a2 X2a,
020, X —-40, X, 022 -5/4 94X%4 ~-30203 X3 -5/20,3 X, 03X
-15716 a4X4 -302X, a5 174 a* - 4 q; 02X, — 172 03a,
5/8 X2 3/20q,203X3 209, X, 0,2 3/16 a8 X8
-3/16 o) -100,3X,30,X5 -15/20a3 X;3az X, 5/8 a8 Xx,3
5 0,3 X)2az -5/2 a2 X202 3716 a5 X,
-02a, 5/2 03X, 0z Xp
15/8 a,% X8 372 g3 a,
-5/4 g8 X3 15716 a,% X,8
3/8 o8 X, 5/8 5 X, 3
-9/16 98X,

Remembering the forms for a (BEquation 34) it will be seen that certﬁin
a terﬂfzupon substitution wil) be transferred down the table from (kAp)Y to
(kAy) ,» (KA ) N+4  etc. The substitution and the proper tranfers result in
the Bs terms and are conveniently summarized in Table V.
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TABLE ¥ — Bg — Terms to Fifth Order

—kzg
( F|+F3(kAo)2)= B = Bap = B33 = Bag = Bss =
K1 X, 2 AppXp 3 Az Xy 4 AgaXa 5 Ass Xs
__l_z_ —-3/4 X2 —3 X, AppXp =3 ApPXp2  —6 X AggX
Biz= -1/4 — Agp -9/2 X,AzzXs —9AyX2Az
(kAg)?2 X, Az 172 X3 — A — 2 Agq
—3/4 X2 —3 X AzaXy 172 X, —3/2 Asz —3 App Az
A2z 3X2A22X2 66X Age?Xp
174 372 X3 2X, Aga 9/2 X,2Az3
—-1/2X, Agp Xp 2 X, App2
—5/16 X4 3X, Azs
+ Bs = Bog = Bas = -5/8 X2 4 A2 Xp
X1 As 2 Agq X2 3 Azs X3 -1/16 3/2 Azz X3
(kAg )4 -3X, XpAzh0p ~3/2 Az X,2  -3X, X2A3A5, -5/2 X3 Aps
-3/2 X2A13 —3X XaAas —1/2 A3 -3X, X2A24 -5/2 X,2A,,
1/72 A3 Az Aoy -9/2 X,AgzXs — AzAzs -5/2X,Az0
- 3 Ap2X,2 Aos 3/2 Ajzs - Ap, -1/2 App
A2 9/2 X,3A13 6X.2ApXp 3/2 Az X3 3/16 X5
3X\2ApXy;  —3/2 X, Az =2 AppXy 3/2 Az X, 5/8 X,3
—2X) Agp  -9AXpA33Xs —-5/4X)%  —6X,AsX, 3/16 X,
Apz Xa 3 AppAsg 1/74 2 Ass
—15/16 X|4 12 X App2Xp2 9 X,2A33 X3
5/8 X,2 9/2 X2 Az3X3 6 X, Az22Xp?
-3/16 -4 X, Agp? —3A33X3
—3X, Azs —4A,2X%,
3/2 AzzXs 2 X, Ayp?
—10X,3A,,X, —15/2 X,3Az,X »
5 X,2Az2 -5/2X2A5;
— App 5/2 X, AzoXp
15/8 X5 3/2 Ag,p
-5/4 X3 15/16 X,5
3/8 X, 5/8 X,3
—9/16X,
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Now from Table Y, using the relations of Tables III, onme obtains immedi-
ately the following fifth order solution.

Ay =

TABLE ML

Fi = 1/X, = tanh k£

Aun = F) { 3X2 + |
22”7 "2F, Xp—| 3
F X 2
Az = _3—|-:—|—)1(;—:|— {A22(3X| Xp+1)— —2' (1 + X, )}
Az = —Azs
3X3-X
Fas = F) Ag — F/2 [Ausx. —Aza(3X; Xo—1) + _"‘"z"""]

Agq®

Ag4s

Agsg =

Azg=

F
4F,""x4_-| {A222(3X22+ 1)+ % Ass( 3X) Xa+ 1) = Agal 3X2 X2+ 2X, + X2)
5X;* + 10X 2+ }
+ 16
_F‘L'_‘ ‘&"1(3)(2+|)+-§—A 3(3X X3—I)—2A22Xz(3x|2-l)
2F, Xz -1 2 | 2 3 !
| F
+T(5X|4—|)‘ #I- (8A22X3—3X|2—|)}
Fi
—_— A X +1 Agp A + 3X
5F, Xg=| {2 a4(3 X, X, ) + 3AgAaz (i 3Xa X3 )
— 28,203 X X2?+ Xi + 2X2)—~ 3 As3(3Xi2X3 + 2X) + X3)
+|?A22(5X|3X2 +5X|2+ 5X| Xz + | )- -i% (BX|4+ |0X|2+ 3)}
L {A|3A22(3X| X2 +1) + A (3X, Xz+|)——-3-A.3X| (1 +X2)
3F|X3_| 2

+ 28,43X,X4=1) =3 AgsX3(3X2=1)-2A222 (3%, X2-2Xp+ X,
A
+ 2 (15X3Xe +5X2-5X Xz~ 3 )= 1= (I5 X8+ 10X -9X,)
Fs

~ 2F, (6 A3zX3 —6A22X; X2 — 2 A2+ X, +X,3) }
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TABLE VI con't
Aig = — Az - Asgs

F5 = {F| A|5-F|2 [X| A|5‘—A|3A22(3X| Xg "|)-A24(3X| Xg-—l )
+ 3 Ais Xi (3X2=1)=3AnA55(3% X3 = 1) + 4 Ap2X, (3X2 —1)

+%A33(3X|ZX3" 2X| +X3)"A22(|OX|3 X2-5X|2+l) + Le (|5X| _|OX|3+3)

— Fi F3 [Ausxu —A22(3X; X2 —1) + % (3%,2 —I)] }

The constant in Bernoullis’ equation is Sbtained from the first
column of Table V, as followss

X2- 1
K= {| + (kAg)? -LI,‘,— + (kAg)* [A,3(3x,2—l ) + 2A,.2 (3X2-1)

“‘2A22(3X|2 Xog —=2X) +X2) + &

2kzg [ Fz 2]}
|~ kA
Fi Fi (kAo)
The above presentation of consecutive equations are in a convenient
form for computing the A- terms and the F- terms for any selected value

of k4 , either by the long hand method or by use of a high speed computer,
For example, consider kh= 2n (deep water), then one obtains tanh k

(|5x.4 —-10X,2 + 3)]

= 13
in fact, for k£ = 27, tanh Nkl = 1, whence X1 X, =X, =X, =X =1.
It will follow in turn:
3 8
Ap=1, Fp =1, Aga=1, Azz= ’3‘ » Az=— 5, Fa =1, Ags= 3
5 125 31 - | 2|

A2a=— 5 , Ass= 531 Rss=— g, Ais=— 57 and Fs = =, ond

the constant in Bernoullis'’ equation becomes

K=1 + (kAg)2 - 6 (kAg)*-2kzg [I—(kAo)Z]

The Undisturbed Mean Water Depth

The undisturbed mean water depth is obtained by use of Bquations 5
6, and 7, in which cos Nk (X - € ) and sin Nk (X -§

s s) are represented
by sums of two products each respectively as follows:

cos Nk (X —&5 ) = cos Nk&g cos Nkx + sin Nk&g sin Nkx (42)

and

sin Nk (X~&g) = cos Nk&g sin Nkx - sin Nk€g cos Nkx (43)
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Now cos Nkf and sin Nk fs can be expanded by series to as high

an order as required. For example, the fifth order expansion for

equations 6 and 7 are as follows:

k"7s=o,[|——|2—(

k€s)? + 5 (kEs)“] kAo cos kx

+ 0, kas - % (kfs )3] kAo sin kx

tag|l-2 (kﬁg)a] (kAg)? cos 2kx

+ ap 2k£s——‘-3‘- (kfs)3] (kAg)? sin 2kx

+03[|

-3 (kfs)a] (kAg)® cos 3kx

+ 0y L3k£s] (kAg)® sin 3kx

+ a4 (kAg)* cos 4kx

+a4 L4k€s] (kAg)? sin 4kx

+ a5 (kAg)® cos 5kx —kzg

k€= a, X, [| - & (k€2 + 55 (kEs)“] (kAg) sin kx

=9 X
+ ag X2
— gz Xz
+ a3 X3
— 03X3
+ 04 Xg
— 04 Xg

+ ag Xg

& - L 3| (kA k
Ekfs 3 (kfs) ] (kAg) cas kx
12 (kfs)a] (kAg)? sin 2kx

[Zkfs— % (kfs)s] (kAg)2 cos 2kx

-| —% (kfs)a] (kAa)3 sin 3kx

3k ] (kAg)® cas 3kx

(kAg)* sin 4kx

4k€s] (kAg)* cas 4kx
L

(kAg)® sin 5kx
|

In the above equations Xy = tanh NkZ
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The procedure for solution is first to eliminate k { from the
right hand side of Equation 45, This is done by the prodss of re-
substitution: the first order is obtained as k{ =0 X kA sin kx
and is substituted into equation 45 to obtain thessecoidlordzr, which
in turn is again substituted inte equation 45 to obtain the third order,
etc, until the desired order is obtained, The resulting expression is
then substituted into equation 44 to eliminate kEs from the right hand
side, obtaining an expression for k7) independent of k¢ . Pinally, this
equation for k7 is substituted intosequation 5 and thesintegration re-
sults is an exp%ession for d/L as & function of £/L. It will be con-

venient to write equation 5 as:
L
kzq =k(£—d)=—"_-f k7 dx (46)
o
It was found to the fourth order (also fifth order) thats

kzo = 4 9,2 X, (KAg)2 + 02X, (kAg)* (47)

Where all other terms vanished by 1ntegration.2 Based on 4equation
47, the sixth order term was predicted to be 3/2 a Xq (kA )", and was
then verified by the detailed process of resubstitgtion a.nd°1ntegruticn.
Based on the above findings one can suppose the following power series
equation: M
kzg= 5 2 Nay? Xy (kAg)®" (48)

]
where N= 1, 2, 3, .,,.M, order M = 2N

For example, the eighth order term is found by setting N = 4,
which results in

2 0,2 X, (kAg)®

Since the depth is the known parameter it is desirable to obtain ./
as a function of d, whence

k£ =k (d+zq) (49)
1 1
Where = and letting Y = ————w by substituting
k(d +2 ) for k4 Eﬁﬁhuﬁiﬁg hyperbolic 1§ent§ﬁgs}?gtﬂn of two products)
one obtlins
YN + tonh Nkz
Xy = — 2 (50)

I+ Yy tanh Nkzo

Bquation 50 can be expanded to as high an order as required
according to the followings

XN = [YN + tonh NkzO][l"(YN tonh Nkz°+ (YN tonh NkzO)z—""] (5'
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tanh Nkz, = Nkzgy - —:_l,’- (Nkzo)3 + -I% (Nkzo)s--e-!:,-:’—o' (Nkz°)7 +- ] (62)

Bquatiens 51 and 52 are then used together with equation 47, and
by the process of resubstitution kz is eliminated from the right
hand side, and one obtains a relatiSn of kz as a function of kd. For
example to the sixth (also seventh order): ©

kzo =—|é-a.2 Y, (kAo + [angg - —}—‘—a.“ Y, (Y2 - )] (kAo)* (53)

Yz (Y|2—I) + 2Y| (Yaz"l)
2

Returning now to the fifth order solution, and from Table IV

+ [—3" 032Y3 - a|2 022

Y2-2
5 -i-a.eY.(le--l)'-l—a-'--](kAo)6

I + Az (kAg)2 + Ag (kA

a,

ap = Agp + Ay (kAQ)2,  whence

kzo = o Vi (kAg)® + [Azzzvr2 - 2SN + Ay, ] (kAg)*  (54)

For the terms A_,_ and A__ above for the fifth order tanh k£ = tanh kd,

and using Azz and Algzas obthined before one obtains for equation 54

kZo s Kz (kAo)z +K4 (kAo)‘ where (55)
K, = ‘Iz‘ Yy

\
Ko = 55 U7—19%2 -21v*-9Y°)

Accelerations

The horizontal and vertical components for the accelerations
of the fluid particles are obtained respectively from the following
expressions:

d = a | a a

l: = ;-‘ + — l Lgu + W I (56)
dw _ w | I QJu? ow? l
._T = .@T. + - .T + _;.. (57)

169



COASTAL ENGINEERING

The differential quantities on the right side of the above
equations can be obtained by use of equations 24 and 26 together

with equations 20 and 21, whence

du . r-t s 90U ryws-! _OW
at Cc [Kr,s]u ruU w ot +sU W ot ] (58)
ow _ r-1 s 0U rws-! oW
2 'C[KF»S]W ot ws QU st ; ] (59)

[
[
] u" wS ot ws QL 4 syt WS _a_wj (60)
]

—é%‘:-z : CZ[K“S u [ ox X
%%ﬁ":cz[.(ns]uu’ws[ru"ws glz’ +su'ws'-g—‘i’—: (62)
.'z..éizw_z: c? [K'»S]w ur wS[r ur'ws ia?-f- +suUf ws '%] (63)

In the above [Kr s] u and[Kr s:' w are given respectively by
equations 25 and 27, ’ ’

au oW
Now and 3¢ can be obtained from equations 20 and 21 respect-
at dat

ively as follows:

U . _u 2 N cosh Nk (£+2-7) |
5t C - grke 2 N2 ay (kAg) Y sinNg'  (84)
. 2 N sinh Nk (£+2-7) |
() kC 2 NZay (kAg) crh NCE cos NG
oW _ (-4 kc S N2 kAN sinh Nk (£+2-7) cos NO'  (65)
at ' ¢ 2 N%ay (kAo) sinh NkZ os

h Nk (L+z=T) _
— (¥ KC T N2ay (kAN =2 rf:{lz N sin NG
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In addition, one obtains the following:

%%'IT%% (66)
g{’q—%g—‘t” (67)
%;l %ﬂ--—é-a—‘t’” (68)
%_%%%‘:_ (69)

Procedure for Computation

The first operation to be performed is the evaluation of the co-
efficients a_, for example, the fifth order solution as outlined in
Table V., Thgs is done by selecting H, Y , and L, and perform computations
to obtain the required a _ coefficients, water depth d and wave period T.
These evaluations are then used to obtain expressions for the surface
profile and the velocity potential,

The next step is to select k(x-f) and k(2 -7M), coordinates of
the undisturbed particle positions, and from equations 3 and 4 compute
kx and kz the coordinates of the particles. The surface profile is
given forz -M= 0.

gu dw Jdu 9dw

The next step is to compute U, W, ot ot 1 Ox 1+ Ox
au/b , andOW 9z, respectively by use of equations 20 21, 64, 65, 66,
67, 68, and 69,

The horizontal and vertical components Oflhw;%%-ond %?% are then
obtained respectively using equations (24, 25), (26, 27), (56, 58, 60,
61) and (57, 59, 62, 63).

Transformation of equations to the form of Stokes'

The previous development resulted in equations in an unexpanded
form. These equations can be expanded, using suitable approximations,
and it will be shown that the expanded forms are identical to those ob-
tained as outlined in Stokes' solution. The procedure is to expand the
following identities.
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cosh Nk (L +2-7 = cosh Nk (d +2z) cosh Nk {2o-T) + sinh Nk (d + z) sinh Nk (z¢ -7
sink Nk (£4z-7)=sinh Nk (d +z) cosh Nk (zo-") + cosh Nk (d +z) sinh Nk{zo-")
sink Nk£ = sinh Nkd cosh Nkz, + cosh Nkd sinh Nkz,

cos Nk (x-§) = cos Nkx cos Nk + sin Nkx sin Nk&

sin Nk (x-§)

sin Nkx sin Nk — cos Nkx sin Nk§

In the above equations the expressions involving kf and x 7
are expanded by series to as high an order as required, and by the
process of resubstitution expressions are obtained for kx§ , k7, u/C
w/C in the expanded form,

For example, consider the second order solution involving the
expansion of equations 6 and 7,

k")sz 0, kAo[cos kx + k{s sin kx] + 0, (kAo)2 cos 2kx —-kzo (70)
kfs = 0; X, (kAp) [sin kx = kfs cos kx] + 03 X, (kAo)2 sin 2kx (71)
For the second order it will be seen from equation 54

kz = { Y, (kAg)2 and from equation 50 that xlu ¥y and x2 = Yz‘

For®the Third order X_ =Y X =Y_, but

2 2 3 3

X =Y [1+(kA)2 I—'-i-—'—]
1 1 o 2

The first order solution of equation 71 is k& = a,X (kA ) sin kX,
and is substituted into equations 70 and 71 to obtaifl the s%cona order
equations,

K,

kg

o1 X; kAg sinkx + (azXp — 4 02 Xi2) (kAg)? sin 2kx (72)

o, (kAg) coskx + (o0, - -'2— a,2 %) (kAg)? cos 2kx (73)

Using a, = A, and a, = A11 = 1 as given before, equation 73 for
the surface p%ofilgzbecomeiz

— tonh? kd
Ne/ Ao = cos kx + —>
s/ %o X 4 tanh® kd

which is identical to Stokes' solution

{kAg) cos 2kx (74)
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Consider now the second order solution for particle velocity
for which from Table I

U-U%+ W2 (75)
W-2WU (76)

A
C

olz

To the second order the expanded forms of U and W (equations 20
and 21) become:

= 's—?l;—l'w'i%(c)j— [cosh k (d +2) cos k(x-Ct) +k& cosh k (d +2) sin k (x~ Ct)

— k7 sinh k (d +z) cos k (x-Ct)]

+ 20, (kAg)? °°s';|§: (adk+dZ) cos 2k (x-Ct)

and

W= ———9‘;:,:?@ [Sinh k(d+2) sin k(x-Ct) -k sinh k (d +2) cos k (x-Ct)

— k"M cosh k (d +2z) sink (x—Ct)]

+ 20, (kAo)? 22K L2) i 2k (x-ct)

The first order solution for kE and k7 for substitution in the
above are obtained from equations 1 and 2, respectively as follows:

cosh k (d+1z) .
k€ = a, (kAg) Snh k3 sin K x (79)

- sinh k (d+2)
k7 = a; (kAp) sinh Kkd cos k x

(80)

Substituting equations 79 and 80 into equations 77 and 78 one ob-
tains the following:
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. cosh k (d +2) 2 cosh 2k(d +z) -
U = o0, kA, <mh ka cash x + 20, (kAo) sinh 2kd cos 2k{x-Ct)
+ 0,2 (kAg)2 {-cosh 2k (d+z) cos 2k {(x~-Ct)
2 sinh2 kd
and
(8
. sinh k(d+2) B} 2 sinh 2k (d+z) -
W = a; (kAp) sinh Kd sin k{x-Ct) +2a;, (kAp) sinh 2Kd sin 2k(x
a2 2 sinh 2k{d+2z . -
a,2 (kAp) -—g—é-—)-z sinhZkd sin 2k (x~Ct)
Substituting equations 81 and 82 into equations 75 and 76, one
obtains:
L 20, kAo °°52";h‘l‘(’d+” cos k (x=Ct) (83)
+[ 29, __ ___o ] (kAg)? cosh 2k(d+z) 2k (x-Ct)
sinh 2kd _ sinh2 kd 0 s z)cos ek ix
Xz o) kAo SAELEZ) gink (x-cn) (84)
20, _ 9 ] 2
+[smh2kd sinhZkd (kAg)® sinh 2k(d +2z) sin 2k (x-Ct)

Using a, = Azz and a = A11 = 1, as given before, equations 83
and 84 become:

(85)

u_ . cosh k(d+2z) _ 3 2 cosh2k(d+z) _
<° (kAo) snh Kd cos k (x-Ct) + 7 (kAg) b kd cos 2k (x-Ct)
hk(d+z) 3 h2k{d+z) (8s)

w . S xicrzi - 2 2 sinh 2k z) .. -
¢ =(kAo) ——— == sin k (x=Ct) + 7= (kAo) onh k4 sin 2k (x-Ct)

In general Stokes' equations can be written as follows:

M
_ k - I N cosh Nk(d+2z) -
== Iz ay! (kAo)  hNkg - S'n Nk (x=Ct) (87)
M
u_ . | N cosh Nk (d+2z) -
C §': Noy' (kAg) o Nkd cas Nk (x-Ct) (88)

174



A THEORY FOR WAVES OF FINITE HEIGHT

N sinh Nk{d+z)
emh NKd sin Nk (x-Ct)

M
& - |Z N ay! (kAo)
M
kMg = 2 by (kAN cos Nk (x Ct)
|

It will be convenient to write

o =1 + a3 (kAg)2 + a5 (kAg)* +
85 = G + Uuq (kAQ)Z +
a3' = Q33 + Q35 (kAQ)Z +
aq' = Qgaq + -
etc.

I + Bis (kAg)2 + Bis (kA)* +

by
bz = Bzz"’ Bz4““°‘o)2 + -

= Bas + Bss (kAg)? +

o
(4]
3

bs= Bas+
etc

2
B 2% 475 (KAQZ + Vs (KAQ*+

(89)

(90)

(on

(92)

(93)

The procedure applied to the second order solution has been extended
to the fifth order, using also the expanded relationship of tanh Nk £ .
The results of this expansion leads to the following relations for the

coefficients:
TABLE MII

Y, =t =tanh kd

3 -tz
Qap = 4 t3
B | 3-t2

a,+ —— =
22 22 2t 413

. 3+12 i~t2 i-212

%33° gtz [Baz 3t T Qa2 ]
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By = Qg3 + & + & ’sz + 5 ay, L+12
Qs = - Pas 8—':2
:Bca -7 Baa
Ys = B - a5+ % - '3222' + Qp |2_:2
Gt g1z [ Bos F75 + e + 0 AT
* e Boe ST + 30y SRTAT vant LA ]
B44= Qg t 'Zl;‘ﬁzz"' > '8133 + 4I8t + ‘1222 + Qs .Bzz _I-z":}"_z_
+3as ity
Qa4 = 2Qp; Q3 + 4;;?3'2 3;,53'2 (a3 + Bas) +Bae _?_8"_'{2_'_3_
+Bes i 2,3 + Qa2 %‘6‘&"' 3a33 ‘,"3%;;'2")“" 022(‘113'*'.333)"?5—
+ @22 Ba2 ‘lz_ttz' — @® 2_}34
Baa= aza + 2a13 (Byy— ayp) - a|32+t + 4 .322"'|2|_,
+h B e san
Qgg = '%,‘Z‘(% [:Bzz 'I_G:Z + Bas |2-,t2 + azp Bao |—45t2
+ 0 Ban 135 dage T w300 A + § 0 B TR
+ Qa4 ‘I‘:;&('IZT-?QL} + % Qzp Q33 I;(%titzt; ]
.355"155"' Bao® + 4 :333"‘3—&7;' ""12' '3:4 +TI‘5" B'zz
+ Qg Boa+ @22 B33 l%z_ + ap IT;'}!Z_ + 'g— Q33
+%‘133:Bzzlt_(%%'t—;')‘+ 44% .
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3+t2 [ 17 a3+ 1—t2
Q35 = 3Q33 3 + [E‘é‘+_‘§_8"§'ﬂ+(ﬁa4 2 Bz Bi3)- BETEE

at2
12 1+ t2 az + B
""—'Bza2 12 +Bss+B44 2, + B2 et +Baa"‘§""2"ﬂ"
|—2t2 2 7 +5t2
+ (@24—20Q2Q)3) —7— ~ Q22 (a3 + Bas) + @z Bao 3
19-1112 3 35-3912 | +12124 714 14312
+0n eyt F Gt % i r e +3a33(a,3+333)3”2
3 | +3t2 3 | +2t2-~-3t4 , |-61t2+514
+5 Q33 Bzt S412 2 92e%s Ty (3ye) T %22 T
i e t .@y_%&'&_lz | +12
Bss= @35 + 30 (Bg3—0gq)— 3133 Bas "J' @3+ Bss)"?'
Qpa—(Q2p Q13 | +12 A L B44 3 ____BZZ
+ 2 t +2'B33+eﬁza 384+2 t +I6 t
I +t2 9 | +6t2+ t4
+022822 +aZZT+ 4 033+a44 2t (| + t2)

Bea-2 B2z a3
2t

Q15 = — { Bys+Bss ~3213 ( Bas + ajz) = 3 (a3 +B3s) +
a

1 Bez I 2 I Op4-2Q22Qy3 | +12
+ 7 g B’ g Byt 2 ;

Qoo Baz+ @ | +12 1412
_ G2 Ba 13) - + 2az, Baz + a2z Bas o1

5
192

+

|+1’2 9 2
+ a2 —g7—t+F %t 2 @33 B3z —i-:i'——-}

t(3+12)
BI5 == [:335 + '355]
|- t2 171

13
Ys = 2Q3Y5 — g (a3 + Bss) + (324'2822 a;3) 31 tioz

Bza 12 + Q24 — 2taaaa|3

|-2t2
- azolaiz + Bag) —7

65+en2+a 12 + 3t2
24t 33 3412

-3t
+ 022822(2+fa) +¢122333 I—2§f__ + ay,

|~6t2-3t4 I
+3ay3 By St T T Bz2 (a3 + Baa) t
| +10t2+ 514 o |+ 14t24 1714
Qs @
t 3022 @ Tyt %2 412

Using kzo as determined, etc.
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2. 2. 4. 6 8 10
K=1+(kAg)? - I+(kA°)4[l8+63t 72t4-591% +26t8 + 241t ] !

2 6418
The above coefficients may be solved conveniently in consecutive orde
For example, for deep water t = tanh kd = 1, whence,

|
i =1, @y =0, Bzz"i

3 I
Q33 = 0, 333=-§,C¢|3=—|,B.3=-—g—,73=|,044=0, B44='§
5

.

i2

= - - = = A =
Q24°7 5 324"3‘, Qg5 = 0, Bss"g,_gz; » @38° 73, Bss' 728

(4]

7
Qs =~ 76 » B “'%%%‘, Yoz 5. K=I

Loss of Accuracy in the Expanded Form

When the exact solution of the wave problem to a particular Mth order
is expanded to obtain the Stokes' solution to the same Mth order there will
be a loss of accuracy. The greatest errors will be with the higher order
terms, The first term will have minimum error. The reason for the errors
arises from the fact that the coefficients a_ of the series (either the
expanded or the unexpanded form) are evaluated on the basis of the unexpandec
form. The above statement appears somewhat difficult to understand if one
inadvertently considers Stokes' solution to be in an exact form to the Mth
order. If this is the case, then Stokes' form must be expanded along the
free surface (which results in the unexpanded form) prior to substitution
into Bernoullis' equation., This operation results in an evaluation of the
corresponding coefficients based on the unexpanded form, but are then ap-
plied incorrectly to the Stokes' or the expanded form,

For example the velocity potential component for the Mth or last
term of the Mth order, for the unexpanded form and Stokes' form are res-
pectively as follows:

kPm . M cosh Mk (Z+z-7) ; —Cho
EM_ - ay (kAo) ey sin Mk (x-Ct=§) (95)
and
_ kd’M - a.l M cosh Mkd : ~
c ay' (kAg) ~nh Mka- S" Mk (x-Ct) (96)

Along the free surface Z = N = ﬂs and the above equations become
respectively:

kPpm M _cosh Mk £ -Ct -

- ._%_s - oy (ki ST sin MK (x-Ct-§) (97)
kbmg | M cosh Mk(d +%) .

— —C...._ ™ OM (kAo) W sin Mk (x Cf) (98)
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For evaluation of the coefficients of the Mth or last term, the
expansion of cosh Mk (d +7 ) will be cosh Mkd which is the same idea
as 2=T=T=0. Any consideration of finite Mg for the Mth term of
Stokes' Mth order results in M + |, M + 2, etc. order terms, which are
neglected by the mechanics of the solution,

It then follows that the error in the Mth term of Stokes' solution
will be in proportion to:

cosh Mk (d + 2z )
cosh Mk (d +z-7)

Along the free surface the error will be

cosh Mk {d +7)
cosh Mkd

and along the sea bottom there will be no error since the
above ratio reduces to unity.

If one considers the last term of the third order wave theory, M = 3,
and for example, the wave H = 35 ft,, T = 12 sec. and d = 85 ft., then
one obtains L = 581 feet, 7] = 22,1 feet at the crest and?” - H = - 12,9
feet at the trough and from Zhe above ratio: °

cosh Mk {d +Tls) _ 16.057

cosh Mkd 7 869 2.04 at the crest
and

5.225

7869 ° 665 at the trough
The deviations of the above ratio from unity reflects considerable
error. For the unexpanded form the above ratio is always unity.

For the M~1 or next to the last term of the Mth order, the percent
error will be less since the expansion of this term for Stokes' solution
will be cosh [(M-—l) k (d+7 )] = cosh [(M-l) kd] + (M - 1) [k") sink
(m-1) kd] s s

In view of the above considerations it appears that the use of
Stokes' higher order solutions should be limited to low wave steepness,
i.e.77s small compared with d.

With the aid of electronic computors, the unexpanded form given
in the present paper can be utilized easily for computing wave properties
and thereby obtain greater accuracy theoretically than by utilizing Stokes’
equations,
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SUMMARY AND CONCLUSIONS

A theory for waves of finite height, presented in this paper
is an exact theory, to any order for which it is extended. Two sets
of equations are given in an unexpanded form, when upon expansion
represents an approximation to the exact theory, and this approximation
is identical to Stokes’ theory extended to the same order. The waves
are irrotational,

Consecutive order of equations are given which can be used, either
by the long hand method of computation or by use of high speed computors
for computing the wave properties, These equations have been worked
out to the fifth order, both in the exact form and also the approxi-

mation or Stokes' form.
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APFENDIX

SYMBOLS

H/2, half wave height

= a az, a_, etc, Coefficients of velocity potential series

1 3

B11’ B13, etc. Terms for the Bernoulli Equation

L/T Wave celerity

Undisturbed mean water depth

F F3, FS’ etc, Higher order terms for wave celerity

17
Acceleration of gravity

Wave height, vertical distance between crest and trough

2n/L, Wave number

Constant for Bernoulli Equation

Parameter related to mean water depth

Wave length, horizontal distance between two successive wave crests
Mth term of the Mth order

1, 2, 3, 4, to M, Consecutive terms of the series

pressure

Remainder terms in expansion of equation for particle velocity
Exponent

Exponent

Wave period

time also used to denote t = tanh kd

horizontal component of particle velocity

u at the free surface

A form of notation .used related to u for higher order terms

vertical component of particle velocity

Wg = W at the free surface
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=
L]

A form of notation used related to w for higher order terms

horizontal coordinate of particle

b
n

Xy = X, X,, etc. = 1/tanh Nk L

Y, =Y, Y, etc. = 1/tanh Nkd
Z = Vertical coordinate of particle
z =‘£ -d
()
7N = Vertical displacement of particle from its undisturbed position of
rest
”]s =7 for the free surface
E = Horizontal displacement of particle from its undisturbed position
of rest
Es = § for the free surface
P = density

0 = k(x -~ Ct)
1
o =k(x-ct -§)
V2= Operator
0 = Notation for partial differential
4) = Velocity potential

\I’ = Stream function
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