CHAPTER 2
 HURRICANES AND HURRICANE TIDES

Cordon E. Dumn
U. S. Weather Bureau
Mism, Florida

Most of the maxdmum tides of record between Cape Hatteras, N.C., and Brownsville, Tex., have been produced by tropiosl eyclones, or, as they are generally known in the United Statea, hurricanes. Some of the highest tides of record northward along the coast from Cape Hatteras to Cape Cod have been produced by hurricanes. From time to time our "northeasters", which are extra-tropical storms, may also eause millions of dollars of damage along the Atlantic coast between Miami, Fla.s and Eastport, Me.

The Atlantic hurricane is identical with the Pacific typhoon and the tropical cyclone of the Indian and South Pacific Oceans. The term "hurricane" is defined as a storm of tropical origin with a cycionic wind circulation (counter-clockwise in the northern hemisphere) with winds of 75 mph or more. However, in popular terminology, any winds of 75 mph or more are often described as hurricane winds.

FCRMATION

Tropical cyclones develop in essentially homogeneous warm moist tropical air with no fronts or temperature and moisture discontinuities. The exact nature of the physical prosesses involved in the formation of hurricanes is not definitely know. However, there appears to be a number of meteorological conditions essential for tropical storm formation: (1) comparatively warm water $80-81^{\circ} \mathrm{F}$ or higher; (2) a prem existing wind or pressure perturbation; (3) some outside influence which will intensify this disturbance, and (4) a type of wind flow in the high troposphere which will permit ready romoval of the excess air and heat to other regions outside the hurricane area. These conditions are frequently present during the hurricane season but not necessarily in the proper relationship, and hurricane fomation is relatively rare. It must be admitted meteorology does not yet have complete answer to the problem of hurricane formation.

Hurricanes form only in those oceans and in those seasons in which sea surface temperatures are the higheat. Here the accumulation of latent and sensible beat in the atmosphere reaches its maximun. The energy for the intensification of an ordinary disturbance in the tropica into a hurricane comes from the release of onergy in the form of latent heat (latent heat of condensation) during the precipitation process.

Frequently in the early stages of development and even for a few days after reaching hurricane intensity, the hurricane may be quite small, almost a pinpoint on the usual weather chart. As it becomes

COASTAL ENGINEERING

older, it also becomes larger, although it may not, and indeed usually does not, become any more intense. The most intense hurricane of record on land, the Labor Day storm on the Florida Keys in 1935, with a central pressure of perhaps 892 mbs or 26.35 inches, was quite small and had a path of destruction only 35 to 40 miles wide. The largest Atlantic hurrioanes may have damaging winds over an area some 100 to 500 miles wide and full hurricane winds 300 miles wide. The average dimeter of hurricone winds is perhaps 75 to 100 miles.

FREQUENCY

The number of tropical storms (winds of 40 mph or higher) has averaged about 8 per year for the past 75 years, 9 per yaar for the last 40 years, and 10 per year for the last 20 years. During the past 70 years, the largest number of tropical storms noted in any one year was 21 in 1933. In 1914 only one tropical storm was reported and that was not of full hurricane intensity. About 58% reach full hurricane intensity and on the average only about two storms per year bring hurricane force winds to the coastline of the U. S.

AREAS OF DEVELOPMENT

Easteriy waves, in which Atlantic hurricanes frequently develop, may move more than 2000 miles before any indication of intensificatior can be detected. Even after the transition from stable to unstable conditions has begun, a period of 3 to 6 days may be required for the initial vortex circulation to grow to full hurricane intensity. Durir this period the wave may travel an additional 1000 to 2000 miles, Where should it be said the hurricane formed? Where the easterly wave first began to intensify, where the tropical storn reached hurricane intensity or perhaps at some other point in its life history?

The approximate positions where tropical storms reached hurricame intensity during the period 1901-1957 have been plotted on Fig. 1. cnly those storms where this point could be estimated with reasonable accuracy have been used. It can be seen that the density of hurricane formation increases steadily from the extreme eastern Atlantic to Loni tude 56°. It is noted that almost no tropical storms reached hurrical intensity between Hispaniola and South America in the Caribbean but elsewhere in the tropical and sub-tropical Atlantic south of Latitude 30°, hurricanes are about as likely to develop in one place as anothes For many years textbooks have described the doldrums as the area wher most hurricanes develop. This is certainly not true if the position where hurricane intensity is reached is considered as the place of development. Indeed, many tropical storms attain hurricane intensity il the area where the trade wind has the greatest strength and persisten,

Fig. 1. Locations where Tropical Storms reached hurricane intensity, 1901-1957.

TABLE I

1.	July 1896	33.	July 5, 1916
2.	Sept. 28, 1896	34.	Aug. 18, 1916
3.	Oct. 8, 1896	35.	Oot. 18, 1916
4.	Aug. 2, 1898	36.	Sept. 28, 1917
5.	Aug. 31, 1898	37.	Aug. 6, 1918
6.	Oot. 2, 1898	38.	Sept. 14, 1919
7.	Aug. 1, 1899	39.	Sept. 21, 1920
8.	Aug. 17-18, 1899	40.	June 22, 1921
9.	Oct. 30, 1899	42.	Oct. 25, 1921
10.	Sept. 8, 1900	42.	Sept. 15, 1924
11.	July 10-11, 1901	43.	Oct. 20, 1924
12.	Aug. 14, 1901	4.	Hov. 30, 1925
13.	Sept. 11, 1903	45.	Dec. 2, 1925
14.	Sept. 14, 1904	46.	July 28, 1926
15.	Oct. 17, 1904	47.	Ang. 25, 1926
16.	June 17, 1906	48.	Sept. 18, 1926
17.	Sept. 17, 1906	49.	Sept. 20, 1926
18.	Sept. 27, 1906	50.	Aug. 7-8, 1928
19.	Oct. 18, 1906	51.	Sept. 16, 1928
20.	July 30-31, 1908	52.	Jume 28, 1929
21.	Aug. 31, 1908	53.	Sept. 28, 1929
22.	July 21, 1909	54	Sept. 30, 1929
23.	Sept. 20, 1909	55.	Aug. 13, 1932
24	Oct. 11, 1909	56.	Sept. 1, 1932
25.	Oct. 17, 1910	57.	July 30-31, 1933
26.	Aug. 11, 1911	58.	Aug. 4, 1933
27.	Aug. 28, 1911	59.	Aug. 23, 1933
28.	Sept. 13, 1912	60.	Sept. 4, 1933
29.	Sept. 3, 1913	61.	Sept. 5, 1933
30.	Aug. 16, 1915	62.	Sept. 16, 1933
31.	Sept. 4, 1915	63.	June 16, 1934
32.	Sept. 29, 1915	$\begin{aligned} & 64 \\ & 65 . \end{aligned}$	Sept. 2, 1935 Nov. 4, 1935

Fig. 2. Point of Entry and Direction of Travel of most of the hurricanes crossing the coastline between Cape Hatteras, N. C., and Brownsville, Tex., 1896-1957 (Number at beginning of arrow refers to number of storm in Table I.)

Fig. 3. Point of Entry and direction of travel of all Tropical Cyclones giving hurricane winds in Florida, 1885-1957 (Number at beginning of arrow indicates year of storm).

SUSCEPTIBLE COASTAL AREAS

The points of entry and the cirection of travel of each hurricanc which bes crossed the U. S. coastline from Cape Hatteran, N.C., to Bromsville, Tex., Prom 1896 to 1957 are shown on Fig. 2. The dates of these storms can be found in Table I. All sections from Palm Beach, Fla., southward and along the entire Gulf coast are subject to hurricane visitation from 1 in every 7 years to 1 every 20 years or more on the average. The remainder of the South Atlantic coast is visited less frequently. Hurricanes are comparatively rare north of Cape Hatteras and eapecially se from north or the Virginia Capes to Hew York City. However, New Rngland is occasionally subject to major hurricanes and was frequently struck by these storms betwear 1938 and 1955.

The pointa of entry and the direction of travel of all Florida hurricanes from 1885 through 1957 are shown in Fig. 3. The sections with highest frequency are the extreme southern portion of the Florida peninsula and the panhandle section on the Gulf coast. The hurricane frequency is very low on the northeast Florida coast. The reason for the low frequency is that the coastiine is parallel to the normal storm track and if the atorm recurves to the extent that it misses the southeast coast, it will also miss the northeast coast. This section is more susceptible to the fall and winter northeasters. The apparent low frequency on the Givef coast between Cedar Keys and $8 t$. Marks is not believed real. This area is very sparsely settled and the exact point where many of the eanters actually reached the coastiline is not know, and there has been a tendency to place the centers too close to the regular Weather stations with the lowest pressure.

Of the 74 Morida hurricanea occurring during the past 75 jears, 31 are know to have been attended by damaging tides. However, many of the centers made landfall in relatively uninhabited areas and the exact storm tide is unknown. It is estimeted that a $6{ }^{\circ}$ storm tide occurs somewhere along the Florida coast on the average at least once every two years and probably more often.

LIFE SPAN OF HURRICANES

The average life span of a hurricane is about 9 dayz. August storms normaily last the longest or about 12 days. The factors which determine the lifetime of a hurricane are the time and place of oxigin and the general circulation features extating in the atmosphere at the time of occurrence. Very fow hurricanea diasipate while tboy ramain over tropical or sub-tropical waters unless some abnormal feature of the wind flow pattern surrounding the atorms acts to bring cold or dyy air inte the hurricane circulation.

Obviously those storms that develop in the Cape Verde region in August and September, when the semi-permanent Azores-Bermuda HIGH is at its greatest intensity, will have the longest life spans, since they normally travel westward for several thousand miles before recurving northward and eventually northeast or eastward around the western and northern sides of the HIGH. One hurricane has been tracked for over a month. This year (1957) hurricane Carrie was picked up, already a hurricane of great intensity, on September 6. In the wave stage it can be tracked back to near the African coast on the 2nd, Fig. 4. It was still of hurricane intensity on September 22nd as it moved through the Azores. It finally became extra-tropical and eventually moved across the British Isles.

AVERAGE DAMAGE aND FATAILTIES

In this century in the United States alone, at least 12,322 persons have been killed by hurricanes, or an average of over 200 per year. During this same period hurricanes have also caused at least 3 billion dollars of damage in this country, or over fifty million dollars per year. It is estimated that over 90% of all fatalities were from drowning and about 75\% of all damage was from hurricane induced sea action or floods. The rapid continuing growth of population and construction along vuinerable coastal areas is increasing potentia: casualties and property losses from tropical storms. If occasional oatastrophic property losses are to be avoided, better coastal zoning and scientific coastal engineering are necessary.

THE WIND FIETD

The mean wind field for the lowest 1000 meters around the center has been calculated by Miller(1) for a large number of observations in some twenty hurricanes. The wave heights (over the open oceans) depen upon the wind velocity, the length of time the wind operates upon the wave, and the fetch or distance over which the wind has blown in a rel tively straight path. It can be seen from Fig. 5 that the highest win occur in the right semi-circle, and also that the winds operate upon t waves there for the greatest length of time in the direction in which the storm is advanoing. Thus the largest waves and swells are generat in the right semi-circle. These move faster than the storm and may mo many hundreds of miles out ahead of the center and eventually reach th coastline. The direction from which these swells approach the coast i determined by the storm's direction of motion and its bearing from the place of observation at the time the swells were generated. Iines or sones of convergence can also be seen in this composite picture, which in individual hurricanes may form or dissipate or rotate a considerabl distance around the center within a few hours. Although there is some difference of opinion among storm surge specialists, it is not believe these convergence lines have any significant effect on storm tides.

Fig. 4. Track of Hurricane Carrie, 1957.

Fig. 5. Miller's Mean Wind Field Oml km Layer Movement of Storm.

Fig. 6. Profile of Carol, Hazel, Ione.

At the center of the atorm'a circulation is the 'eye' of the hurricane. Formerly the eye was defined as the central portion of the storm where the winds were light and variable and the skies partly cloudy with no precipitation. In the alassical hurricane, comalomimbus type cloud, or 'wall' cloud, extending to 30 to 40,000 feet on more tightly encloses this relatively calm area and within five miles the wind may increase from 15 to as much as 125 mph depending upon the intensity of the storm. However, from radar it is evident that the diameter of the precipitation eye is often much larger than the wind eye. The precipitation eye is occasionally 40 to 60 miles in diametes while at the same time the wind eye may be only 15 miles actoss. The complicated relationships between the sise of the ege and the maturit: and intensity of the atorm are beyond the scope of this paper except to say that extremely high tides are rare in hurricanes with large wind eyes; i.e., wind eyes with diameters in excess of 30 miles.

FNERGY CONSIDERATIONS

A tremendous amount of onergy is released in a hurricane through the process of condensation which has been estimated by some meteorol gists as the equivalent of several hundred atomic bombe per minute. About 15 to 20% of this energy is needed to drive the wind circulatio of the atorm(2). A large portion is necessary to maintain convection in the hurricane, where the atmosphere is very close to the moist adiabatic. Only about 2% is used to overcome the effects of surface friction(3). While the hurxicane is over water, waves and swelle are forned by the frictional action of the winds on the surface of the water. These result in a dispersal or energy from the storm in all directions.

Energy both in the form of sea action and maximum winds ooncentrates the hurricane's destructive forces along the imediate coastline. Friction and often other factors tend to increase the atmospheric pressure at the center of the storm diminishing the pressure gradient and consequently the maximum winds near the center as the on tire atorm circulation moves over land. The energy which the sea receives from the wind is dispersed radially from the atorm. Part of the energy directed toward the coast is used to raise the water level over the continental shelf before the main wind system of the storm arrives at the shore. The energy arriving at the coast becomes progressively more concentrated until it reaches a maximum in the form 9 und, storm tide and storm waves with the arrival of the storm's central area.

The rise in the ocean level induced by meteorological condition: should not, atrictly speaking, be called a 'tide' since that term implies a periodic rise and fall of the level of the oceans. Since 1 seams likely the term 'storm tide' and 'hurricane tide' will continus in popular usage within the foreseeable future they will be used in this paper interchangeably with the more technically correct 'storm

HURRICANES AND HURRICANE TIDES

surge'. Definitions of the storm surge and the stom tide and discussion of the equations of motion governing storm surge generation have been discuseed by Harris(4).

The storm tide, or meteorological tide, resulting from hurriomes can oftea be described as having two atages. The first is the 'forerunner' which is a slow rise due to the shoreward transport of water by shoaling mells and waves irrespective of local wind direction. The rate of this rise in sea level vaties as the concentration of onergy radiated from the storm through the water. The second is the 'surge' which is usually a more rapid rise cansed by direct transport of water by hurricane winds and cometimes believed to be intensified by a gravity wave possibly produced by a shoaling of the 'inverted barometer' wave. Dr. I. M. Cline, Meteorologist in Charge of the Weather Bureau Uffice at Galveston at the time, reported a rise of 4 feet in as many eeconds at about the time of lowest pressure during the famous Galveston hurricane of 1900 and there have been similar observations in other harricanes. The rate of the storm tide rise near and a short distance to the right of the center of hurricane Autrey, 1957, was about 1.5 feet per hour along the immediate Culf coast for the 4 or 5 hours preceding the arrival of the center but there was no authentie evidence of a bore or very rapid rise there.

Several outstanding atom tides, all in connection with hurricanes, have occurred along the Atlantic and Galf coasts in this contury, namely: Galveston 1960 mad again in 1915; Taupa Bay in 1921; Miami 1926; Palm Beaoh and Lake Okeechobee 1928 and again in 19L9; the Florida Keys in the Labor Day storm 2935; New England, particularly Narragansett Bay 1938 and again in 1954; Hasel, south of wilmington, N.C., 1954, and Audrey, Cameron, Lae, 1957. This list does not include 211 the outstanding storms with ing tides since 1900. The madimum reported tides or all these storms averages 12.5 feet above mean low water.

Of the 24 best documented storm tides along the coast of the culf of Mexico, the maximum storm tide heights averaged 10.3 feet with a range hatween 5 and 25 feet. The avorage maximum reported height of 14 fairly well docunented storm tides of the Atlantic coast was 9.7 feet with a range between 3 and 15.5 feet. This group does not include some entering the Florida peninsula where the average height of 25 major storm tides between 1900 and 1955 was 9.8 feet, MSL. The number of documented storn tides is not great onough to attach much significance to the differences between the averages for the various sections given above but because of the predominately shallow coastal waters of the Gulf of Mexdco and the concavity of the coastline, a higher average might be expected there. Very high storm tides will occur at the heads of bays and estuaries, particulariy when the storm center moves inland on a course at an angle of 90° or less to the coast line (right quadrant).

COASTAL ENGINEERING

In Fige 6, three storm tide graphs with height plotted as a function of distance normal to the track of the storm center clearly shows the maximmen tide occurring at or immediately to the might of the center. This slopes rapidly down to about the level of the prestorm tide height or the height of the 'forerunner' and then very slowly diminishes with distance along the coast. It is obvious that a forecast of storm tide levels must be based on an accurate forecast of the point of entry of the stom center, which, unfortunately, is not always possible.

The present thods of forecasting the hurricane tide are largely ompirical, and perhaps the one by Conner, Kraft and Harris(5) is the most widely used. The basic tide produoing capacity of the storm is assumed to be indexed by its minimum central pressure. Other modifyin factors such as (1) slope of the continental shelf; (2) shape of the coast (concave or convex); (3) coastal topography and preaence of bays estuaries, etce, which tend to accentuate convergence or divergence of ocean currents, must be evaluated qualitatively.

Fig. 7. Storm Surge as a Funotion of Ilinimum Pressure (After licGehee).

In Fig. 7, tide heights are plotted as a function of lowest pressures observed within a group of Florida and South Atlantic atorms. This results in a graph with considerable scatter. However, two lines can be dram, one representing the maximum and the other the minimm tide heighte produced by storms with the same central pressure. A tide height is forecast which is a value between the maximum and minimum as determined from a subjective evaluation of the modifying factors described in the preceding paragraph. The central pressure of a hurricane is usually, but not always, known. Probably hurricane Audrey of this year was intensifying rapidly as she reached the Louisiana coast and her minimum pressure was not available to the forecaster. It is well know there are other important factors which contribute to the total storm height. Mention of these is omitted since at the present time there is no known method of evaluating their contribution.

A scientific analysis of a hurricane tide presents manifold difficulties. Construction of a laboratory model would present several difflcult if not insoluble problems. The moving short radius of curvature with proportionate pressure distribution of the horricane wind fleld probably defies duplication. And, in nature, the quantitative contribution of the numerous factors determining the total storm tide have proven impossible to evaluate separately up to this time.

In conclusion, I would like to acknowledge the very considerable contribution of Mr. William MoGehee, storm surge foreoaster at the Mismi Hurricane Forecast Center, in the preparation of this paper.

Raferences

1. Miller, B. I., 1957: The Three Dimensional Wind Structure Around a Tropical Cyclone. Unpublished manuscript, U. S. Weather Bureaa, Miani, Fla.
2. Riehl, H., 1954: Tropical Meteorology. McGraw-Hill Book Co., New York, N.Y., p 322
3. Hughes, L. A., 1952: on the Low Level wind Structure of Tropical storms. Journal of Meteorology 9, 422-428
4. Harris, D. L., 1957: Study of Storm Surges. Paper delivered at 6th International Conference on Coastal Engincering, Gaineaville, Fla., Dec. 3, 1957
5. Conner, W.C., Kraft, RoH., and Harris, D.I., 1957: Empirical Mathods for Forecasting the Maximum Storm Tide Due to Hurricanes and other Tropical Storms. Mon. Wea. Rev., Vo1. 85, pp 113-116
