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ABSTRACT 

The proper design of a pipe line for the transport of gas or oil from 
sea to land requires the solution of a number of engineering problems 
either not encountered in pipe line engineering on land or found to be of 
a different nature in the marine environment than in the terrestrial 
environment. These include: (l) consideration of the vertical stability 
of the pipe, (2) consideration of the lateral stability of the pipe and 
its vertical risers in the presence of wave-induced forces, and (3) con- 
sideration of the longitudinal stability of the pipe in the presence of 
thermally induced tensile and compressive forces. The first of these 
considerations is treated in the present paper. 

In those areas where the bearing capacity of the upper sediments is 
small, as is the case for certain regions of the Gulf shelf, downward sag 
of a pipe line can occur and entrenchment of the line to considerable depths 
may be necessary in order that excessive stresses within the pipe be avoided. 
Because both the flexural and longitudinal tensile stresses, occurring 
simultaneously, can be important in a sagging pipe line, both must be 
evaluated. Appropriate formulas and graphs are presented for this purpose. 
From these and a knowledge of the sediment characteristics along the proposed 
pipe line route, it is possible to determine whether or not regions of 
critical sag might develop in a pipe of given specifications. 

Contribution from the Department of Oceanography of the Agricultural 
and Mechanical College of Texas, No. Ik.    This paper is based in part 
upon research sponsored by the United Gas Pipe Line Company through 
the Texas A 8s M Research Foundation. 
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INTRODUCTION 

The present and potential source of offshore oil and gas in tideland 
regions of the Gulf of Mexico demands an economical mode of transportation 
from sea to land. Pipe lines can meet this demand, if designed not only 
to endure the processes of deterioration in the sea, but also to withstand 
the internal stresses induced by lack of adequate support, by severe wave 
loads, or by thermal changes. 

An introduction to the scope of problems encountered in the design 
and installation of pipe lines to be laid upon or beneath long stretches 
of the sediments such as the continental shelf of the Gulf of Mexico has 
been given in another paper (Reid, 1951). The purpose here is to expand 
upon some of the physical problems which are encountered and to present, 
in summary, the results of theory and techniques which may be useful in 
the design of a marine pipe line. 

Some of the specific questions which arise in connection with the 
laying of a pipe line offshore are: 

(1) What route should be followed in reaching a certain off- 
shore destination? 

(2) Can the pipe be laid upon the bottom or must it be buried 
within the sediments? 

(5) If the burial of the pipe line is indicated, what should be 
the depth of burial? 

(k)   Will the pipe sink into the sediments; if so, how much sag 
will be experienced and what will be the stresses induced 
thereby? 

(5) Will support of the pipe in regions of weak sediment be 
required in order to insure vertical stability of the pipe, 
either from the standpoint of downward sag due to excessive 
net weight of pipe or from the standpoint of buckling 
associated with thermal expansion? 

The engineers of the United Gas Pipe Line Company were confronted with 
problems of this nature in planning the 15 miles of 20.5 inch pipe and 
10 miles of 1!* inch pipe which has recently been laid within the sediments 
of the Atchafalaya Bay, Louisiana, and the adjacent Gulf. (A discussion 
of the preliminary investigation appears in the Petroleum Engineer, March 
1951, and the installation of this line is discussed by Paul Reed, 1951.) 

Such questions can be answered or at least partially answered by con- 
sidering the vertical stability of the pipe in the light of the general 
stratigraphy and strength distribution of the sediments along the path of the 
pipe line. 
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VERTICAL STABILITY OP THE PIPE 

GENERAL DISCUSSION 

Adequate support of a pipe line resting upon or passing through the 
sediments of a marine environment, such as encountered on the Gulf Shelf, 
cannot be taken for granted. The conditions of sediment strength and 
degree of consolidation are considerably different from those which are 
encountered in the case of ordinary soils. According to the soil mechanics 
classification given by Terzaghi and Peck (19W), those soils having an 
unconfined compression strength of greater than 8,000 pounds per square 
foot are considered extremely stiff and those soils having a strength of 
less than 500 pounds per square foot are considered very soft. The 
different degrees of stiffness which make up the classification are 
contained between these extremes. In comparison, the mean unconfined 
compressive strength of silty clays and clayey silts encountered in the 
upper strata of the sediments of the Atchafalaya Bay and adjoining Gulf 
region, for example, has been found to be approximately 80 pounds per 
square foot.* Values range from less than 10 to about 250 pounds per 
square foot. All of these values fall in the very soft category. From the 
standpoint of pipe line engineering, it appears necessary to refine the 
classification since the relatively stronger portion of the very soft 
sediments can adequately support certain pipe lines. As an arbitrary 
limit those sediments having an unconfined compressive strength of less 
than 100 pounds per square foot (or a shear strength of less than 50 
pounds per square foot) will be referred to hereafter as extremely soft. 
The extremely soft and very soft silty clays are of recent origin and increase 
in thickness (from a few feet to about 15 feet) with distance from shore 
in the Atchafalaya Bay area, forming a wedge of weak deposits resting on 
top of relatively stronger, and more consolidated, marsh deposits of 
considerable thickness. Even the latter deposits are soft in terms of the 
above classification. 

This is a greatly oversimplified picture of the stratigraphy. 
Superimposed on this structure are "pockets" of nearly fluid sediment 
which apparently extend to depths as great as 10 or 15 feet. These 
pockets lie principally between regions of hard reef, and consequently 
represent a situation to be considered with caution because of the 
possibility of differential sag of the pipe. A route which passes through 
such zones may demand entrenchment of the pipe to considerable depth in 
order to avoid the possibility of overstressing in the pipe walls due to 
sag. Whether or not such sag could be critical depends upon such factors 
as the net weight and length of the section subject to deformation, the 
initial tension in the pipe, the strength of the sediments adjacent to the 
weak zone, and the depth of the weak zone. 

Leipper, et. al. (1951). Oceanographic Analysis of Marine Pipe Line 
Problems. Final Report to the United Gas Pipe Line Company. 

327 



COASTAL ENGINEERING 

The sag of a pipe section, having a length of the order of 200 feet 
or more, introduces a complex problem from the standpoint of computation 
of induced stresses. One is dealing here with a beam which is so long 
that when vertical deformation occurs it is accompanied by a significant 

•elongation. The firmer sediment adjacent to the weak zone will tend to 
restrain the movement of the pipe at the ends of the sagging portion of 
the pipe so that practically all of the elongation will occur in the 
sagging section. This can induce a net axial tension of considerable 
magnitude. The tensile stress thereby induced in the material is in 
addition to the tensile and compressive flexural stresses induced by the 
bending of the pipe. 

In the case of a very long pipe the bending effect can become so 
small that the sagging pipe can be considered essentially as a flexible 
cable. In this case the pipe will assume the shape of a catenary under 
the action of a uniform load per unit length, with the tensile force 
carrying the full load. If the pipe section is very short or if the 
deflection is very small, then the theory of simple bending may apply. 
In this case the net tension would be negligible and the load is carried 
entirely by shear forces. The situation regarding pipe sag in the sediments 
in general, involves both bending stresses and net tension, and the load 
is carried partially by shear and partially by tension. In order to 
insure a safe design where sag is likely to occur, it is therefore 
necessary to compute both flexural and pure tensile stresses induced by 
the sag. 

CRITERION FOR SINKING OF THE PIPE 

An offshore pipe line which is resting upon the bottom will exert a 
downward load on the underlying sediment which is simply the submerged 
weight of the pipe in water, or absolute weight minus the weight of 
water displaced by the pipe. In order that static equilibrium exist, 
the sediment must develop an equal and opposite reaction. There is a 
maximum reaction which the sediment can exert. This may be referred to 
as the ultimate load bearing capacity of the sediment. In general 
the bearing capacity depends not only upon the nature of the sediment but 
is a function of the applied load distribution as well. Thus a pipe will 
have an effect on the sediments which differs from that which a flat 
plate of the same weight would induce. The criterion for sinking of the 
pipe is that the net downward gravitational load exerted by the pipe is 
greater than the ultimate load bearing capacity of the sediment. 

If the pipe is entrenched within the sediment, the problem of 
evaluating the net downward gravitational load of the pipe becomes 
somewhat complex. Evidently the load exerted by the entrenched pipe 
depends upon the structural nature of the sediment itself. In contrast 
to a suspension (which represents a dispersion of discrete particles in 
a fluid), the sediment consists of a continuous network of solid materials 
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which includes water within the interstices of the structure. The 
solid phase presumably supports its own weight and does not add to the 
hydrostatic pressure of the water phase as in the case of a suspension. 
In a fluid sediment, neglecting capillary forces, there will be a 
buoyant force exerted upon the pipe which will be equal to the weight 
of water displaced by the pipe. However, since only part of the total 
volume of sediment is water, the buoyancy will be less than that ex- 
perienced by a pipe submerged in water alone. The water content of a 
sediment is generally evaluated in terms of the per cent of the dry 
mass of sediment,  •'•his will be denoted by the symbol Q,   • The 
buoyancy per unit volume of the pipe in the sediment, however, is equal 
to the mass of water per unit volume of the sediment. If 2B  repre- 
sents the buoyant force per unit volume of the pipe, then 

a, s „ —hi- 
i +• ioo/<a. 

where Ps    represents the density of the sediment (i.e., the wet density). 
As an example, consider a sediment having a specific gravity of l.H and 
a moisture content of 100 per cent of the dry weight. In this case 
Psg. =r  87.U pounds per cubic foot, which leads to a value of  jB   of 
U3.7 pounds per cubic foot.  This represents a buoyant force which is about 
70 per cent of that which would be experienced by a pipe submerged in 
water alone. 

If equilibrium is to exist, the sediment must support a greater 
percentage of the actual weight of the pipe than in the case of a pipe 
resting upon the bottom. The maximum reaction which the sediment can 
develop with respect to the pipe will in general depend upon the 
adhesive property of the sediment with respect to the pipe, the pressure 
existing at the depth of entrenchment, the shear strength of the sediment, 
the cohesive property of the sediment, and the size of the pipe. The 
combined effect of bearing reaction at the bottom of the pipe and 
adhesion along the sides and top of the pipe, under conditions of 
maximum restraint,represents the ultimate load bearing capacity in this 
case. 

For silty clay sediments, the ultimate load bearing capacity is 
evidently independent of the pressure within the sediment, and depends 
only upon the shear strength and load distribution. If "Tg  represents 
the ultimate load bearing capacity per unit length of pipe,  X>  the 
overall diameter of the protected pipe, and 1^     the ultimate shear 
strength * of the sediment, then presumably 

(2> TJ-    fct3JTu, 

#   This can be measured directly for a sample of sediment or can be 
taken as one-half of the ultimate unconfined compressive strength 
for clayey sediment. 
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for a silty clay. For the case of a flat strip load of width 1> acting 
on a flat surface of clay soil, Terzaghi (l?U3) gives 5.1); for the factor 
of proportionality k b . In the case of a pipe,  ^b is probably much 
smaller than this, judging from the limited information available on 
sinking of pipes. The circular shape of the pipe evidently leads to a 
stress concentration in the sediments beneath the pipe which is greater 
than that experienced in the case of a flat plate. For concrete coated 
pipe entrenched in silty"clay sediment, an approximate value of feto « 2- 
is indicated from the experience gained in the installation of United's 
pipe line. 

It must be emphasized, however, that further information is needed 
for establishing the empirical validity of equation (2) as well as 
evaluating the proportionality factor. At the present time it is not 
possible to state the exact threshold of equilibrium existing for a 
pipe loaded sediment. It can be stated, however, that there is a signi- 
ficant probability that sinking will occur if the net load per unit 
length, exerted by the pipe, exceeds Z'D'V'u >  a^d little chance that it 
will not sink if the load exceeds 5~IDTu. . If sinking is to be avoided 
the net load should be less than ^J^Vu. • 

SB/METRICAL SAG CF A PIPE LINE IN PLASTICALLY DEFCRMED SEDIMENT 

The problem of determining the combined flexural and tensile stresses 
induced in the case of differential sinking of the pipe line is examined 
in this section. Two simple end conditions are considered for the sagging 
section of pipe. In the section which follows, an analysis of the end 
conditions for a relatively firm (but non rigid) supporting material is 
made by taking into account the elastic deformation of this material. 

If the vertical restraint per unit length, ""T•  , offered by the 
plastically deformed sediment is uniformly weak in the zone of pipe sag, 
and if the conditions of support at the ends of the sagging section are 
similar, then the vertical deformation of the pipe will be symmetrical 
with respect to the center of sag. 

The net vertical load on the pipe per unit length, u/", is simply the 
net weight of the pipe in the sediment minus the reaction "T?« . If uC, 
represents the weight of pipe per unit length in air (including the 
weight of transported fluid-gas or petroleum), then 

(3) ur ~    *rf-   jT?&  -T=^ 

where ~JS>        is the buoyancy as already defined. The reaction, "Tii, , of 
the distorted sediment is not necessarily the same as the bearing capacity, 

*"F?    , of the undisturbed sediment. 
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The criterion for sinking, however, is that 

( ur,-2^ 0 >"n 
Thus, if the net weight is great enough, then the sediment deformation 
exceeds the elastic state and its structure is broken down, reducing the 
possible reaction which it can develop. 

The Theoretical Model 

A model is envisaged in which a pipe line spans a pocket of 
excessively weak sediment of horizontal distance Jf„     along the pipe, 
resulting in a net downward force US'   on the pipe over the length _#0    . 
The weak material is homogeneous from the standpoint of maximum restraint, 
and is of sufficient depth that the point of maximum sag of the pipe does 
not reach a layer of strong sediment below. Furthermore, conditions of 
elastic flexural deformation and elongation are presumed, such that the 
amount of sag is very small compared to J,a     and hence the slope of the 
sagging section is very much less than unity. The assumptions regarding 
the loading of the pipe and the elastic theory are summarized below: 

(1) The net downward force per unit length, lAJ" , acting on the 
pipe is uniform along the pipe and essentially normal to the 
pipe. 

(2) The downward force is independent of the vertical deformation 
of the pipe. 

(3) The end conditions are the same at each end of the sagging 
section, such that the sag is symmetrical with respect to the 
point of maximum sag. 

(U) The tension due to the axial elongation of the pipe is uniform 
throughout the entire length of the sagging section of the pipe. 

(3>) Plane transverse sections of the pipe remain plane after 
combined bending and extension of the pipe. 

(6) The modulus of elasticity in tension is the same as that in 
compression for the pipe material. 

(7) The proportional elastic limit of the pipe material is not 
exceeded. 

(8) The axis of the pipe is initially straight. 
(°) The slope of the sagging pipe is so small that the rate of 

change of the slope per unit length of pipe represents the 
curvature of the pipe. 

(10) The pipe is of uniform cross section. 

The assumption of negligible tension cannot be made for a sagging 
pipe line, as is done in the case of a simple beam, because of the magni- 
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tude of the deflection involved. If the maximum deflection in a fixed 
end beam is of the order of magnitude or greater than the width of the 
beam, then the restoring moment associated with the induced tension 
becomes appreciable. * In order to keep the complexity of the problem 
at a minimum, the assumption (U) is made. This appears reasonable 
provided that the tension is large compared with the limited amount of 
longitudinal restraint provided by the sediments in the weak zone. 

Probably the most severs restrictions regarding the application of 
the theory are (l), (2) and (3), and to a less extent (h). In applying 
the theory to a real situation one must keep these assumptions in mind. 
Examples illustrating the use of the theory are given at the end of 
Part I, and certain modifications in the application of the theory are 
discussed. 

The Basic Equations of Combined Flexure and Slongation in a Pipe 

A schematic diagram of the sagging section of pipe is shown in 
Figure IB, and the equilibrium of forces and moments is represented 
graphically by Figure 1C. The origin of the coordinate system is 
taken at the point of maximum sagj j£    represents the horizontal 
distance measured positively to the right of this point, and ^  is 
the vertical distance measured positively upward from this point. 
This allows a convenient form for the equations governing the deflection, 
in view of the fact that symmetrical sag is considered. The bending 
moment at the origin is denoted by Al0     >  anc* the total axial tension 
after deformation of the pipe is represented by A/    . An initial 
tension may exist in the pipe line, due to thermal or pressure effects 
within the pipe. This is denoted by /^e     , and is represented 
graphically in Figure 1A.  The shear at the center of sag is zero for 
symmetrical sag. In view of assumptions (l) to (10), the equation 
representing the balance of moments about point A in Figure 1C is 

ft)       * =   ei jfi = "• - ^+"9, 

where M   represents the bending moment within the pipe at section A 
of distance X   from the origin. The quantity £   is the modulus of 
elasticity in tension (or compression) of the pipe material, and JT 

*    Usually the assumption (7) would be transcended in a short beam 
before the restriction involved here would govern; this however depends 
upon the flexibility of the beam. 
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is the area moment of inertia of the cross-section. The latter can be 
expressed as follows: 

(5) Z  = As /"*, 

where    /75   is the cross-sectional area of the steel in the pipe,  and 
A*     is the radius of gyration of the cross-section of steel, taken 

about the neutral axis. 

The balance of vertical forces between 0 and /?  is given by 

(6) /=  4z? =   - ^x +*^£ 

where y     is the shear force at section /}     . Consequently the shear 
at the end of the sagging section is 

(7) /,  = -£^» /- //e,  j 

where &j     is the end slope at %= -^*4L (the negative of that at-2"= --^£). 
Because of the small values to which the quantity 0    is restricted, it 
represents therefore the angle (in radians) between the pipe and the 
horizontal plane. It will be noted from this that the shear forces at each 
end carry only part of the total net weight of the sagging pipe, unless the 
ends are held rigid and the, angle 0    is zero. The total net weight nC/ , 
of course, must ultimately be sustained by the vertical reaction of the 
supporting material at each end of the sagging section. 

The General Solution of the Equations for Symmetrical Sag 

The solution of (U) for the vertical deflection of the pipe is 

(8) 

where "\    is a characteristic length defined by 

(9) ^-•V^ 
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The conditions Q - ° and ^/ty •=• °  at % - o are employed in 
arriving at equation (8). 

The expressions for the slope, "bending moment and shear at any 
point in the sagging pipe can be derived from equation (8) as follows: 

(10) *-i»« ^jl^-^)(smh %)    ^urxj, 

(li)      M= (Mo-cA^Uo*^*/;^ + ^X% 
and 

(12)        V = -r CH0 - ur\^ smk */x . 

(8a) 

It can be shown furthermore that in the limit (8) reduces to 

when N is extremely small. This equation, representing a special 
case of the more general relation (8), is that which the simple theory of 
flexure yields. 

On the other hand, if N is very large then V is small and (8) 
reduces to 

(*> * = ^> 

which is the approximate form of catenary sag associated with tension N 
These two limiting cases serve as checks on the more general theory. 

Application of Hooke's Law for Evaluation of the Tension 

Since the tension is one of the sought variables of the problem, an 
additional equation involving A/  is necessary in order to make the 
solution unique. This can be established by applying Hooke's law to the 
over-all extension of the sagging pipe section. If JL  represents the 
length of the pipe section between points (!') and (l) after vertical 
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deformation has occurred, and 4J.  is the initial length between the 
same points in the pipe prior to deformation, then the overall strain is 
given by 

(13) r£_^S* - 

where A/—/*t>    is the increase in tension due to the longitudinal strain 
induced by the sag. The length of the deformed section can be found 
from the approximate expression: 

Jc/Z 

W 1 =   *.   i-   f    e* 

which is quite valid as long as /&/  •<••£ / 

Longitudinal Slippage at the Ends of the Pipe. 

The quantity ^cU.     is not necessarily the same as ~^o     , 
because if longitudinal slippage of the pipe occurs at the ends, then the 
original length of the section between points (1*) and (1) will be 
greater than ^£e     and the resulting tension in the pipe will be lower than 
that for the case of no slippage. The amount of slippage will depend upon 
the longitudinal restraint offered by the stronger sediment adjacent to 
the zone in which sag occurs. If the sediment exerting this restraining 
force is perfectly rigid then no slippage will occur and ^c£   will equal 

jdB   . If, on the other hand, the sediment at the ends of the pipe 
offers very little restraint, then _^c" will be nearly the same as ^£ 
and the resulting value of (/Y-Ae ) will be small. 

The amount of slippage at each end of the sagging section is 
(J!j-Ja)/2'    This slippage is proportional to the increase in tension at 
the ends of the sagging section. The slippage is also proportional to 
the effective length of pipe, adjacent to the sagging section, which 
undergoes elongation. This effective length is determined the final 
balance existing between the longitudinal restraint exerted by the 
surrounding sediments, and the increase in tension ( /V—/Ye  ) at the ends 
of the sagging section. From these considerations it can be shown that 
the following approximation is applicable 

as) J:-A-    (A/-M'^ 
fr A* 

s 

where J^.     represents the maximum longitudinal restraining force per unit 
length of pipe offered by the sediments adjacent to the Weak zone. 
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If the pipe is buried in the sediments in the adjacent sections, 
then  >f.  can be expressed in terms of the ultimate shear strength, 

•Z"'     of the relatively strong sediment as follows: 
V 

(16) < - -TV  ^ 
j 

where it is assumed that shear occurs at or near the surface of the pipe 
of overall diameter JZ? 

For a pipe lying on the bottom J^.       is equal to the coefficient 
of friction between the pipe and bottom multiplied by the submerged 
weight of pipe per unit length. 

The Characteristic Dimensionless Parameters 

In order to make the functional relationships existing between the 
basic variables of the problem as simple as possible it is convenient to 
introduce the dimensionless parameters given in the Table I. 

Table I 

Ea.     Name 

(17) Bending moment factor 

(18) End shear factor 

(19) Tension factor 

(20) Flexibility parameter 

Symbol 

771 

Definition 

M 

rx 

% 

V, 

Hi,*" 
ELX 

urA?_ 
Eli- 

The definition (17) can be applied to the moments at the middle 
and at the ends. The quantity 

(2D 7Yl0 = -^r 

*   The quantity    V   is the radius of gyration of the cross section as 
defined previously and equals -J ~£/f\<   • 
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is the bending moment factor at the point of maximum sag,  and 

M, 
(22) Vfl.     = 

UrJ[t 

is the bending moment factor at the ends of the sagging section. 

Likewise, as a special case of (19): 

which is the intial tension factor. 

By making use of equations  (7) to  (11),  the following relations 
can be established! 

(2)0 jf   =        -i-    -       f^Q,, 

&) vn. =     -•* +  L.   J 

(26) yy,      = ~ "f       -i-    i 

and 

(27) 

'   "   n-feu^, «/. n*" ^ 

±L =      ^V   Ti- 

where  U.m is the maximum vertical deflection or simply the sag. 
Special forms of these expressions are given below for the two commonly 
visualized end conditions. 

Case I: Rigid Ends with Zero Slope 

This condition is illustrated schematically in Figure ID and 
represents the situation for which Q  = o . In tnis case the equations 
(2U) to (27) take the form: 

(2Ua) ^ =  -L } 
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(25a) yvi„   =      -      + •o 

(26a) YA.   =     - 

A' 

•+ 

and 

The maximum bending moment factor (and hence the maximum bending moment) 
occurs at the ends for this condition and is given by TVI,  . 

Case II; Ends Free to Turn 

In this case yvi, = o , which implies a maximum slope (or inflection) 
at the ends of the sagging section. For this condition: 

(2Ub) •k A =  .i (x - ^knhr) * 

(25b) W10    =      7T*-(I  "   cJcvJ        ; 

(26b) Ja     •=.     ~   ~bc^U  n/x        > 

and 

(27b) 

In this case the maximum bending moment occurs at the center of sag. 

The Relation between the Tension Factor and Flexibility 

It should be noted from the relations above that the bending 
moment factors m6  and  vn,  and also the shear factor -to     are fully 

#   Note that Xo/Y    represents the slenderness ratio parameter, which is 
the critical variable in the stability theory of columns. 
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determined by the tension factor r\ * . This factor must be determined 
from the flexibility parameter CL,      , the end conditions, and the initial 
tension. Equations (10), (13), W), (15) together with <25a) or (25b) 
yield the additional relations required: 

(28) \   -      k' k*.   ±Cn)> 

e 

(29) 

where  .— 

Do) kx = -fiTT^ («"•-«*), 
and /, 

The function Mp)   depends upon the end condition.* For case I ( ©, = o ): 

-n       -V 

te,  ft„) = ft* = -fr n4 j n"- 1 n + ,4 + 9n pli^£J] J ; 

while for case II ( wi, = o  ): 

(33)    JW = J>) = -fi4" |n - *4 + TTI I +C<^«   J. 

The quantity  -^   is a dimensionless parameter which may be 
referred to as the slippage coefficient. The slippage is large when 
the restraining force J^,     is small compared with ur   • If the 
ends of the pipe are held so that no slippage occurs, then M^— / • 

to 
If both    sd    and    -y70    are zero then    ft   = Mx= / and (28) reduces 

(28a) 
% 

= £ in)       for S(=oJ 

or 

(28b) ^ = k (»)       £"- **», = o . 

*   , See Table VIII in the Appendix for tabulated values of £0^) 
computed for different values of n    ranging from .01 to 1,000. 
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The function J>/rf) [i.e.,   <fc>  for 71?~° , /d-&   }  <^~<?J is shown 
graphically in Figure 3 by the clashed curve. The function J-^ (i) is shown 
graphically by the full curve labeled ^>a'=^ in the same graph. By 
means of this graph it is readily possible to determine ^ •"• corresponding 
to a given value of <2- for the case of no initial tension and no slippage. 
Curves of 77 *" versus A. corresponding to four different finite values of 
-rf^   are also shown in Figure 3 for the end condition •?*?,=*o. 

The expressions for J"(rf)   in equations (32) and (33) reduce to 
simple forms for the limiting conditions of very small and very large 
values of -71  : 

{55a,„ U» M  =^ = M  ; 
and 

(36) = ^L4 i. 4.Q0  - 

Thus for the case of no end slippage and no initial tension 

(37) y\    =s. 

for large values of a     . Equation (37) is a good approximation if: 

or 

10 
j 

i-oh ©j = o ; 

^ot-  vn.=.o. 

Physically this means that for sufficiently large values of #- , the 
pipe acts essentially as a flexible cable. Equation (37) can oe put in 
the form 

(37a) /V = M,y 
^ 

which is the expression for the tension in a flexible cable of length 
_^  , provided that the sag is very small relative to jg  . 
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If slippage or initial tension is appreciable, or if <L.    is not 
sufficiently large, then the general expressions for ^/^/i)'    must be 
used and the factors M/   and M-z.  must be taken into consideration. 
A more complete graph could be constructed so that -7/* could be 
readily determined from CL  , ~?7£~ and sd     . Lacking such a complete 
graph, the evaluation of ^77* can be carried out by successive 
approximation without too much difficulty (see examples illustrating 
this procedure at the end of part I). 

3-       a- 
It will be noted from Figure 3 that the scales for ?/ and *L- 

are logarithmic, allowing for a wide range of values in both parameters. 
The general curves approach the limiting asymptotic relations for very 
large or very small values of 4. . The limiting asymptotes appear as 
straight lines on the graph, thus making it a simple matter to extra- 
polate the curves for values lying outside the range of the graph. 

Determination of the Bending Moment Factor 

For the end condition of case I "Tff/   is of prime concern, while 
for case II ~Wt0  is the important factor for determination of the 
maximum bending moment in the pipe. As indicated above, these factors 
are functions of "M3" only and are represented graphically in Figure U. 
The factor *?#, corresponding to &t - o  is represented by the dashed 
curve, while -??te    for the case of ^^=(? is represented by the 
full curve'. 

The limiting expressions for these functions can be obtained from 
equations (26a) and (23>b)j see Table II below: 

Table II 
Limiting values of 7MB and ^f^f 

Case I  ( 0, = 0) Case II (7*f, - 0 ) 

Value of -m, Condition Value of -yvio Condition 

JL n< 3 
1 

8 ri3-< £• 

 \_ rYL> JOOO 1 2. 
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i 
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•     s/ 

r\   0    / 

/ASYMPTOTIC TO 

/       CURVE 
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fit   SM.Kl'ljj.' 

•       I        »      1    .•-,,• (•• 

DIMENSIONLESS   FLEXIBILITY   RARAMETER, V 

Fig. 3. Dimensionless tension factor n<*, as a 
function of the dimensionless flexibility param- 
eter, for different values of initial tension 
as indicated, and for two different end condi- 
tions. All curves apply to the case of no end 
slippage ( <&  * 0). 

TENSION     FACTOR, 

Fig, 4. Maximum bending moment factors, m0 
and mi (XLQ,  for the case of no end moment, and 
mi for the case of zero end slope) as functions 
of the tension factor, n^. 
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The limiting expressions for  M,    and M0 in the case of small tension 
are consequently: 

(38) M, -  -7- orl0     ,    £<»-   6,= o, 

and 

(39) No   -    -k   T1*       >      hh   M,= 

which are the same expressions obtained from the theory of simple 
bending. For very large tension, on the other hand, the bending 
moments are a very small fraction of us~JL0 . In case II, the tension 
becomes the prime factor in the determination of the stress in the pipe, 
when T^is large. 

Figure $  shows the bending moment factors as a function of the 
flexibility for the case of no end slippage. The dashed curve represents 

•YYl,   versus CU for  ©1 = 0 and "^J*"—°. The full curves represent 
-Me  versus a? for the different values of ylf~  indicated, for the 
condition ^''-0 , 

Practical Forms of the Equations for Slope and Relative Sag 

The equations (27a), (2ljb) and (27b) can be simplified by use of 
(28). The formula for the slope in case II becomes 

(ho) ^ 0, =  fe, fe^ ks n 
\r 

where' Kt and K^_ are the same as defined xn (29) and (30) and K3 is 
a coefficient which depends upon n  . It can be shown that for the 
entire range of Y\  • 

The average value of K3 is about 2.2U, and the following approximation 
will yield values of 0, which are never more than 10 per cent in error: 

(Uoa) 6, = 2-^4- k.kx -£• rt, C»i, = o}. 
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The formula for the relative sag can be simplified in a similar 
manner: 

&L = KKK« (Ul)      -  .V, .V... 

The coefficient    K^    is determined by  ^    ,  however for the entire 
range of   Y\ i 

(large  r\   ) ^\[%        -C  k^   <    ^^^Sh       (sma11  n  }. 

The average value of    ^4     is about 0.626 for either of the end 
conditions examined here.    This means that the following approximation 
will yield values of   Um which are accurate to within about 2 per 
cent: 

(Ula) u       ~      atat   ie, ka.   •" 

It will be noted that 

k, n -   W 

" >1^".} 

so that both ©t and ^.m are proportional to the square root of the 
increase in tension in the pipe due to sag. Furthermore, if there is 
no end slippage the coefficient  k^ is unity. 

For small values of O,    the equations (27a) and (27b) reduce to 
the forms: * 

.4 

and 

provided that there is no initial tension. These equations are also 
obtained from the theory of simple bending. 

limit of Application of the Simple Theory of Bending 

The simple theory of bending of a beam under the action of a 
uniform load per unit length is seen to be a limiting case of the theory 
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DIMENSIONLESS    FLEXIBILITY   PARAMETER, a.    •»- 

Fig. 5. Maximum bending moment factors (mg 
and mj) as functions of the flexibility param- 
eter q, for different values of initial tension 
factor, n^, as indicated. All curves construc- 
ted for the case of no end slippage (x3 = 0). 

Pig. 6. Maximum combined stress factors, for 
the two indicated end conditions, as functions 
of the flexibility parameter q. Both curves 
apply to the case or no end slippage and no 
initial tension for a pipe with relatively thin 
walls compared to its diameter. Limiting rela- 
tions for very small q and very large q indicated 
by light dashed lines. 
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of combined flexure and elongation given here. The question of 
whether or not the generalized theory is required for a solution 
to the problem depends upon the value of the dimer^sionless 
flexibility parameter and the initial tension factor. 

It is evident from Figure 5 that when an initial tension 
corresponding to a value of Y\J3' greater than unity exists, then 
the simple theory of Jjgnding is not valid. Furthermore, Figure 5 
indicates that, for XTJ^&O, there is also a practical limit of 
flexibility beyond which the simple theory of bending becomes 
invalid. For a 10 per cent tolerance of error in the simple theory, 
the upper limit of flexibility ( Cjc ) in the application of the 
simple theory is! 

(U3a) Qr  = ~fOQ    for  e,= o   (rigid ends), 
) 

or 

i 

(U3b) n      z=    So    for  rYI,= O   (ends free to 
J^ ' turn). 

From equations (U2a) and (U2b) and the critical limits of a, 
given above, it is evident that the upper limits of the relative 
deflection for which the simple theory is valid are: 

(UUa) 

and 

/jH     ~  U,for     ©,   = o ^ 

(UUb) (^\   ~ O.kSfor      yH, » © , 

That is, if the simple theory is to apply, then the maximum deflection 
must be less than the order of magnitude of the radius of gyration of 
the cross section. 

It is possible, for given pipe specifications, to interpret the 
above criteria, for the allowable use of simple bending theory, in 
terms of the length ( M0 )& for different values of net loading uT   . 
Table III gives this information for two different pipe sizes, and 
for values of net load from 1 lb. per ft. to an extreme value of 
1000 lbs. per ft. The load is governed by the weight of pipe 
(including ballast, if any), the weight of fluid in the pipe, and the 
characteristics of the sediment as discussed above, and is not 
necessarily governed by the pipe specifications alone. The stress 

Sy   induced by simple bending under the conditions stated is also 
included in Table III to indicate that, in most of the situations 
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represented, this is not the governing factor so far as the validity 
of the simple theory is concerned. In other words, taking the 20.5 
inch pipe with wr" =• 10 lbs. per ft. as an example, it is apparent 
that there is considerable latitude for increase in ^£0  beyond 
the critical value of 210 feet given for case II, so far as the stress 
is concerned.  However, the generalized theory must be used in order 
to determine the sag characteristics for J!0  beyond this value. It 
can be shown, in fact, that for sufficient length this pipe would 
fail essentially in elongation rather than in bending, under condi- 
tions of free sag with the load of 10 lbs. per ft. 

Table III 

Critical values of pipe length #, corresponding to different 
net loads per unit length, beyond which simple bending theory 

is invalid; and bending stress corresponding to these conditions 

(a) 10 inch O.D. steel pipe: 
1  = 169 in.6 

(1/2 inch walls) 
As=lU.9 in.

2 V = 3.36 in. 

Case I: 0, = o Case II: vn,= o 

lb./ft. 

1 
10 

100 
1000 

ft.     psi 

265    2,080 
11*9    6,580 
8U   20,900 
hi        (60,U00)* 

ax 
ft. 

1U9 
8U 
U7 
26 

psi 

985 
3,130 
9,800 

30,000 

(b) 20.. ? inch 0.D, steel pipe 
X = 2270 in.U 

: (3A inch walls) 
a«U6.5 in.2 1-= 6.98 in. 

Case I: 0, = o Case II: yy\y=. a 

ur 
lb./ft. 

1 
10 

100 
1000 

ft.     psi 

66U    2,000 
372    6,250 
210   20,000 
118   (63,100)* 

ft. 

372 
210 
118 
66 

psi 

938 
2,980 
9,hh0 

29,500 

Based upon the assumption that there is no initial tension; 
E taken as 30 x 10° psi. 

Values in parenthesis represent stresses beyond the endurance 
limit for ordinary steels. 
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THROUGH TIDAL INLETS 

Induced Stresses 

The bending moment induces a non-uniform normal stress across the 
section of the pipe. The maximum value of this stress, S^ , occurs 
in the material farthest from the neutral surface of bending, and is 
given by 

S  - M R°  _  tv^l uri^R. (1*5) ^. -      -    . k     I X     J 

where !Re is the outside radius of the steel pipe. The bending stress is 
zero at the neutral surface of bending and varies from - ^t at the 
concave side to +Sy  at the convex side of bending. The tension induced 
by axial elongation of the pipe gives rise to a uniform stress, S^   , 
given by 

Thermal stress associated with restraint of axial elongation or contraction 
of the pipe is included in this term, since in determining /V thermal 
effects must be taken into account in the term /V0   • 

The vertical shearing force gives rise to a non-uniform shear stress 
at each section of the pipe. The mean value of this shear stress is 

The transverse shear stress varies from zero in the steel farthest from the 
neutral surface to a maximum at the neutral surface. For a pipe of standard 
wall thickness relative to the diameter, the maximum shear stress is 
approximately a. Ss . 

The fluid pressure within the pipe will give rise to still another 
stress due to the circumferential elongation of the pipe. This stress is 
called the hoop stress, S.y,  , and is a uniform normal stress which is 
perpendicular to the normal stresses induced by axial elongation and 
bending. If A.-f represents the difference in pressure between the inside 
and outside of the pipe, then 

(U8) S>.  =  "  A-*? 
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where 1\> and X»^ are the outside and inside diameters of the pipe, 
respectively. 

The formula, for the most severe combined stress at a given_section 
of the pipe depends upon the value of the criterion parameter 4 S5

2"/St. 
Table IV gives the appropriate expression for the governing stress (either 
•Sfc >n   or Ssjtn   ) for three different conditions imposed upon the criterion 
para'meter. 

TABLE IV 

The Governing Combined Stress 
and the Criterion for its Choice 

(B) 

(c) 

Condition 

0 £ 15. < s. 

 •*. 

Governing Combined Stress 

Sj.      -    S, +- s. twi     h  '     t 
-> 

v =i[(\+\)+4?*'*>f+i 

V = ^^(.v^r+its^ 

where S, = (Sl,+ St)-
SK 

It will be noted from Table IV that condition (c) implies that the maximum 
shear stress SSjYV1 governs. This presumes that the yield limit of 
stress in shear is just half that in tension for the pipe steel. 

Under conditions (A) the pipe would fail in tension at a point 
farthest from the neutral surface, provided that St w  were great enough. 
Under condition (B) the pipe would fail in tension ai the neutral surface, 
along a plane which forms an angle of less than 90° with the neutral surface. 
Under condition (C) failure, if it occurred, would manifest itself by shear 
at the neutral surface, along a plane which forms an angle of less than 90° 
with the neutral surface. 
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The position along the pipe line at which the maximum stress occurs 
depends upon the end conditions. The stress  Sb is a maximum at the 
ends of the sagging section for the case of zero end slope; while in the 
case of ends free to turn, thejmximum value of Sy  would occur at the 
center of sag. The stress  Ss  , on the other hand, is a maximum at 
the ends in both cases, but its magnitude depends upon the end condition. 
The stresses  S±       and  Sh      are presumed to be independent of 
position along the pipe. 

For practical purposes, the condition (A) can be presumed for 
nearly all cases of pipe sag, and the governing stress therefore is 

(U9) S,   =   S. + S. 
•km ©    v   j 

where      Sy    is the value occurring at the position of maximum flexure. 
The _validity of this assumption, however, can be checked by computing 
"4 (ft) /Sy,    This must be less than the value of ( £>i>+ S^ ) _    S^       , 
otherwise     Si-bSi   i-s no^ the maximum combined stress. 

The Dimensionless Stress Parameters 

It is convenient to introduce the following dimensionless stress 
parameters: 

and 2- 

(51) 
Sfc 

From equations  (HS>) and (h6) it can be shown that the stress parameters 
are related to the characteristic parameters      YYl    ,       r~>      ,  and   Q. 
as follows : D 

and 

(53.) Vt    =       rt°~  - 
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The maximum combined stress for condition (A) is therefore 

<5U> V St = (^ E K+ <T{)    =   ^ (^ m^ -v rf) . 

The quantity ( tf£ + Cf^ ) can be shown graphically as a function of CL. 
for given values of tt6*" , xd , and "R „ / h • " 

For all practical purposes, the value of 'Ho/h for most pipes may 
be taken as -A/al . This is theoretically correct for a circular pipe with 
thin walls. However, if greater accuracy is desired, the following 
relation can be used: 

(55) -  2L =  •     ^    - , 

where 'R.. is the inside radius. 

Figure 6 has been constructed using '^•/h - ~Va^ , for the case of 
r\b — o    and X> — o . The value of the combined stress factor ((3fcs+ ^"t ) 
given as a function Ou. corresponds to the combined stress at the point 
of maximum bending in the sagging pipe. Curves for the two investigated 
end conditions, ©,= o and wi, = o, are shown. In the case of ends 
free to turn, the stress factor approaches that for simple bending ( ^T£. =. o ) 
for very small values of <\.  . For very large values of <^U  , on the other 
hand, the combined stress factor approaches that corresponding to the 
stress in a flexible cable. 

In the case of 6, = <=> , the curve approaches that for simple bending, 
for low values of ^L- . However, at high values of <5L the values of 
(OJ-J-CTJ. ) are considerably greater than the corresponding values for 
the case of wi, -« o  . 

In the general problem for which ^o jto and A fio   , it is necessary 
to make use of the relations (52) and (53) in order to compute the 
combined stress factor. The value of ~7rt  to be used in relation (52) 
is the maximum factor for the particular end condition. 

Table IV gives the limiting expressions for ^ , &t- ,  and 
( (71 + <T7  ) for the case of no initial tension and no end slippage. 
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Table V 

Limiting expressions for the tending and the tensile stress factors 
for the case of r\^=o  and A = o 

© 

End Condition Stress factors Stress factors and 
combined stress factor 
for a pipe with thin 
walls   -R^   _  ^ 

Values oft?, 
for which ' 
limiting 
relation 
applies 

^ °t o; <*t <%+<% 

Case I 

i2- r% 6O/4S0 -//p? •//gf 6L</az> 

(4H 
^ 

fr 
£•*)** 

/.zoia .3474? 
*A }>*>' 

Case II 

iH "** •/77t 
-•4 J77f a</<tt> 

•40 326 

** 
£*.>* 

4.02a3 

•**>? t>/0? 

Resume of Theory of Free Sag 

The independent dimensionless variables in the problem of pipe sag 
are the flexibility parameter ct,    , the initial tension factor rj^, 
and the end slippage coefficient ,6 
be ascertained, and consequently 7Zf„ 

cr£    , and cg><£can be evaluated for a given end condition. "The basic 
quantities sought can then be found from the dimensionless parameters by 
applying the definitions of these parameters given by relations (17) to 
(23) together with (50) and (51). The basic physical quantities which 
must be known in order to determine the actual tension, bending moments, 
etc., are summarized in Table VI. 

Given these, the factor r> *- can 
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Table VI 

Category Physical Quantity Units in the ft.-lb.-sec. 
system 

loading factors 
lbs. 
lbs. per ft. 
lbs. per ft. 

span of weak zone {J. ft. 

pipe specification 
factors 

• 
f E 
I 
As 

lbs. per sq. ft. 

ft.2 

The problem is thus formally solved, but only for the two specific 
end conditions chosen, and subject to the restrictions implied in the 
basic assumptions (principally numbers 1,2,9 and 10). 

The theory of pipe sag presented above is not necessarily restricted 
to the case of sag into weak sediments, but may apply to a wide class of 
situations encountered in the installation of the pipe line. The situa- 
tions encountered in nature may be classified as either simple or complex 
from the standpoint of the application of theory. The problem falls in 
the simple category if the conditions are such that the assumptions in the 
theory are fulfilled for all practical purposes. If this is not the case, 
then the problem is complex. However, it may be possible, by proper 
separation of the problem into various parts, to apply the theory in 
modified form. Such a technique must be used in analyzing the situation 
of restricted sag, where a portion of the sagging section of pipe is 
supported by firm sediments after a certain amount of sinking occurs. 

Restricted Sag 

The theory of free sag is subject to the condition 

< h 
* J 

where W is the vertical distance from the ends of the sagging pipe 
section to the bottom of the weak sediment zone. Under certain conditions 
the sag may be great enough that the central portion of the sagging 
section rests upon the firmer sediments at the base of the weak zone (see 
Figure 2A). In this case the portion of pipe subject to free sag is not 
ji    but is a smaller length J'   . The equivalent free sag problem for 
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the length J-0     is represented graphically in Figure 2B. It is considered 
that the slope of this section is small enough that the unit load, w , 
is nearly normal to the pipe as previously assumed. The vertical scale in 
the schematic diagrams of Figure 2 Is greatly exaggerated. 

For the case of zero moment at the ends of section *w , the 
equivalent end slope, referred to the rotated coordinates in Figure 2B, is 

(»> «,' = -%r- 

The section *c„    is subject to an effective initial tension factor 
Ortjf" Siven by 

(57) M   =    ^o (-j-J +  TJTJ ' 

where ~7ta    is the initial tension factor of the straight pipe. 

By making use of equations (28), (29), and (MDa); together with (56) 
and (57), for the special case of Tl/~-=o and no end slippage, the follow- 
ing important relations are obtained: 

f * -~ ¥ 4T [Mf-'] 
-4 

and 

(59) 

where 

(60) 
(        El 

The function J'a.Cl1)   is that given by equation (33), where >7 is 
replaced by W   . The graph of this function, as already noted, is 
represented by the full curve labled *t6

!L = o  in Figure 3; in this graph, 
enter with^^3" on the vertical scale and read J-(n')  on the horizontal 
scale. 
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The quantities (?7')    and -ce    are the key factors to determine, 
because once these are determined, the tension and bending moment can 
easily be evaluated. Equation (58) is not explicit in 71'   and therefore 
must be solved for 77'   by successive approximation and/or graphically. 
The maximum possible range of ^//J,   is 0 to 1/2, and therefore 
must lie in the range: 

(61) °'*<>LTT<  (*')*' <   ^iTf > 
according to equation (59)- This serves as a guide in the selection of 
values for a solution to equation (58). The upper limit  0,-7© (J-v/t-)2" 
corresponds to ^/ — J!o/z. This represents the condition for tangency 
of the pipe at the bottom, with zero moment at the point of contact. In 
the case where the pipe is tangent to the bottom but receives no support, 
O^O^IB  equal to 0.^•^/'/Waccording to equation (W.a); under this 
condition a bending moment does exist at the point of contact. 

The maximum bending moment factor for the condition of no end moment 
is 79!J  . This can be determined from equation (256) by replacing >7 by 
fl1   or can be obtained from the solid curve given in Figure It- by entering 
with (rt')9'on the horizontal scale and reading mj  on the vertical scale. 
The bending moment can then be computed from the relation 

(62a) M' =  vne' ur^O*". 

For the case of rigid ends of the section Jt0  , the problem becomes 
complex, for in this event the section *£J   is no longer symmetrical with 
reference to the rotated coordinates of Figure 2B. One end is rigid and 
subject to a maximum bending moment while the other end is free of moment. 
However, as a first approximation the equations (2*0 and (26) can be used 
to determine the maximum bending moment factor. The angle Ot '   for this 
case will be - h/£';  therefore 

(63) m/ = - \^_ £  »-J 1 
4- 

where 

(610 

rx' x+«U £    &'> 
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The values of Y\      and -*e  , obtained from equations (58) and (59) can 
"be used in (63) and (6h)  as a first approximation. Finally the end moment 
can be found from 

(62b) M,' =  ">,' «r (0> 

and the tension can be found from equation (60). 

DEFORMATION OF A PIPE LIKE IN AN ELASTICALLY. DEFORMED MATERIAL 

In general the relatively strong material which supports the pipe at 
the ends of the sagging section will be deformed itself. This may be a 
quasi-elastic deformation if the material is sufficiently strong, or it may 
be predominantly a plastic deformation. The condition of rigid ends is a 
hypothetical situation representing the limiting case of elastic deformation 
of a material of infinite strength and infinite elastic modulus. On the 
other hand, the condition of zero moment at the ends of the section ^ge 

is a special case of plastic deformation of the supporting material, where 
the net upward unit load on the pipe is the same in magnitude as the down- 
ward unit load in the weak sediment zone. 

The situation of elastic deformation of a relatively strong supporting 
material is considered here. By examining the mutual distortion of pipe 
and supporting material under the action of a known total load on the pipe, 
it is possible to arrive at a "modified rigid end" condition, which makes 
the determination of stresses associated with pipe sag more realistic. 

The Basic Equations 

The equation for balance of vertical forces on a small section of 
pipe is given by 

where T     is the net force per unit length acting in the direction of 
<£.' . As before 1^  is taken vertically upwards. Equation (65) is sub- 

ject to the assumptions (k)  to (10) inclusive given in the preceding 
section, but the restrictions imposed by (l), (2), and (3) are dropped. 
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The assumption which is made in place of (l) and (2) is that 

(66) ± =     -    Efi j'   j   *    Efi = 
pJ> 

>o    ; 

where Eg,  is the effective elastic modulus of the sediment, and u!   is 
measured upward from the equilibrium position of the pipe. 

The other principal assumption is that the supporting material, which 
is subject to elastic deformation, is of semi-infinite extent in the 
positive SC'  direction. The origin is shifted horizontally to the end of 
the sagging pipe section, so that & = a is the dividing line between the 
weak sediment and the relatively stronger, supporting material adjacent to 
it. Furthermore, it is presumed that tdJ  approaches zero for very large 
values of %!', i.e. it reaches the equilibrium position at great distance 
from the end at which the sag load is applied. 

Under these conditions, the solution of (65) is given by one of the 
following equations: 

(67a) U'  -      —£-!—      £~*       A^U  ^CC-fC') f0r    -^    f; 

(67b) u' =     -*!.     e""'**   <c-*') ,      hy  r= I ; 

where 

(68) ~y 

e ' -e 

M 

(69) 

p 
. ^^p7,    v~*-£W ,  v'-~f^ 

358 



SOME OCEANOGRAPHIC AND ENGINEERING CONSIDERATIONS IN MARINE PIPI 
LINE CONSTRUCTION 

(71a,b) *i -    P + ^   >     rV   ?"' 

The constant fy\   represents the vertical displacement of the pipe at the 
end ?c = o , and C represents the position of <^.'= o . The quantity 
^   is a dimensionless quantity which will be referred to as the tension 
parameter. The quantities o* , /S> , y , y',  7lt   , and ^. have the 
dimensions of wave number (reciprocal length). 

In the case of *7^< /, the distortion of the pipe is in the form of a 
damped sine wave, of wave length J.'TT/y,    For ~P^ / the distortic is 
critically damped. A schematic diagram of the distortion of the pipe is 
shown below: 

\ 

Suppoc-l-iru? Ma+eNal 

V Ela-s4-ic 

•*h-*-*\ 

The distribution of reaction, «•  , is indicated by the vertical arrows. 

The distortion ^/*)  indicated in the above diagram occurs at the 
distance A    from the position of zero distortion. For the case of 

(72) 
/-V 
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In terms of the wave length _£- , the value of A lies in the range: 

o < A   < ^e/$, 
the upper limit corresponding to ^= O   (no tension). The position of 
zero slope (corresponding to^=^6** ), zero moment, and zero shear 
occur at distances of A   , x^\ , sxA^A  from the position of &-'—° , 
respectively. A special case of (67a) for the condition //= 6  has 
been investigated previously by Timoshenko (1930)*. In this case, 

For all values of the tension parameter "  ,  i.e., for either damped 
sine distortion or critically damped distortion, the distortion becomes 
negligible in a distance of about AlT/pC  from the end. This distance will 
be small if the elastic modulus of the supporting material is large. For 
all practical purposes, if the supporting material is at least as long as 
X'Tr'/eC >  then the relations (67a,b,c) are valid. 

Maximum Total Reaction and Moment, for Elastic Deformation 

The total net reaction of the supporting material is denoted by/7" . 
This is defined by the relation 

(73) F =  {&•**-'. 
-'o 

In general, the value of F depends upon the arbitrary end conditions 
g,' and C   as well as upon /v , and the characteristics of the pipe and 
its supporting material. The extreme value of reaction, F^/t ,  which can 
occur under the condition of elastic deformation of the supporting material 
is given by the approximate relation: 

(710    F(t  = (6.«o +).3*^r+u)^ >       £.t- V^io^ 

where Si   is the critical limit of J" beyond which the deformation of 
the supporting material becomes plastic. The conditions for maximum re- 
action are that 

»•" c = °     {&**0) 

This is an extension of the original investigation of a beam on an 
elastic foundation which was carried out by Winkler (1867). 
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and 

1^1   - l£| -   ^ 
The bending moment in the pipe likewise depends upon ^,   and C    in 

general. The extreme value which can be obtained, Mv/t ,  under elastic 
conditions, is given by the following approximate relation: 

The condition for this extreme value is that 

and 

»,, 

It should be noted that the extreme values of F" and M do not 
occur under the same conditions of c . 

End Conditions and Total Reaction Relationships 

In general the following useful relations hold for all values of y  : 

• e,- -f-V -^;, 
and 

(78) p =  Ke, - V,   =4 «r Je. 

For the special case of zero tension (y^= o^ : 
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(77a)                                 Q      _     _   cC? 

and                                                             e 
" F   —V3T ^t y.', j 

(78a)                              Fs     - V, =    £ urie . 

Furthermore, if u^o, then 

(79a)                                                (VJ(    - 

and 

(79b)                                               6,   = F                       c^3" rr 

The end moment corresponding to the maximum total reaction of the support- 
ing material (for non-plastic deformation) can he found from (79a) fcy 
substituting for F the value F"u^   from equation (71*-). 

The Modified Rigid End Condition for Free Sag 

By eliminating the dimensionless shear factor *f>   between equations 
(2^) and (26) and employing the definition of 7Mt   from equation (22), the 
general relationship between A1,   and &/   at the ends of that portion of 
the pipe in the weak sediment zone is obtained. Another relationship be- 
tween M)   and &,   which must be satisfied if the pipe is supported by an 
elastically deformed material is given by equation (76) and (77), where 
^y is eliminated between the latter equations. Consequently, if these 

relations are to be satisfied simultaneously, then it follows that: 

(80) 

(81) 

and 

M. 

3, 

fi^.t " F 
1 

ZOL(2>    +   F* 

M, + b 
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<*) y,   -    M, -^F   . 

where 

(83) a. 
Nio 

n -bx^U n/x 

(8>0 b =   - uxi0 &n.)        =   - (M,)        > o 

and 

(85) F    =     ^ —•*• 

The maximum bending moment in the pipe occurs within the supporting 
material at the distance ^£^=* C„+3A  from the position at which Alt 
occurs. The value of the maximum moment M'     „ for the case of jKc-- / is 
given by 

(85) M M/      **>"- e-^+^ 
Wax 

where    C^ is given by 

(86) c£i   >/£m    =   —~ 

and A    is given by equation (72). 

The equations (80) to (8^) represent the generalized relationships 
for a "nominally rigid end condition". That is, the supporting material 
can be considered^nominally rigid if the deformations experienced in it 
are below the critical limit, tf-'c , and consequently are small compared to 
the maximum sag of the pipe, which occurs in the plastically deformed weak 
sediment zone. The maximum bending moment which can occur in the pipe for 
a given sag, depends essentially upon the modulus £?e  of the supporting 
material. For extremely large values of &~e   (approaching that of concrete 
or steel), the deflection gl  and the slope S,   become negligible and 
the maximum moment is essentially (/rfi)^  ±.0  . That is, the condition of 
infinite elastic modulus of the supporting material represents the truly 
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rigid end condition, and is actually never attained in nature. 

In order to carry out any computations for the "nominally rigid end 
condition", it is necessary to determine the tension factor />? *" or /V 
itself. The value of •T?3" for the extreme end conditions &/= £>  and 
•?#, = a  can he determined. In general the value of ~rt *" for the 
"nominally rigid end condition" will lie somewhere between the values 
based upon the above end conditions, since the angle 0/   will lie between 
zero and the value of &/   corresponding to •?*//=:a . As a first approxi- 
mation, the mean value of "^7^ determined for the two extreme end conditions 
can be used. It will be noted from Figure 5 that this approximation can- 
not be more than 15$ in error if <^- is greater than 10,000. For smaller 
values of 4- , the slope &,    can be determined from the first approxi- 
mation of •pi2';  a second approximation for T7 *~ can then be obtained by 
interpolating between the values corresponding to &/ = o   and *??/,=o  , 
by comparing the above value of &,   with that corresponding to the condi- 
tion *w, *=•£>.    In most cases of practical interest, <fr  will be sufficient- 
ly large, such that a second approximation of 7?*~ is unnecessary. 

The Critical Limit of Deformation 

If the deformation of the supporting material is increased to the 
point where significant plastic yielding of the material occurs, then the 
reaction becomes nearly independent of deformation. This means that the 
load, J- , becomes essentially uniform over that portion of the pipe for 
which the deformation has exceeded the critical limit. As a result, the 
bending moment in the pipe is redistributed and the maximum value is re- 
duced . 

It was assumed in the development of the "nominally rigid end condi- 
tion" that the supporting material is elastic in the sense that ^  is 
proportional in magnitude to the deformation, up to the critical limit, 

We.  . In a material such as stiff clay, the load-deformation relation- 
snip* is not linear, and consequently the value of U^ is difficult to de- 
fine. & 

A  schematic diagram of the typical load-deformation curve for clay is 
illustrated below: 

As found in the laboratory as well as the settlement load relation- 
ship observed in the field. 
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As a first approximation, the critical load, ^fe.  , can be taken as one- 
half the maximum reaction of the material, and the critical deformation, 
u'c ,  is that deformation corresponding to JT£ on the load deformation 

curve. Consequently, the quantity 2ET&  = \f& /tfl\ represents a secant 
modulus of the material; its value is roughly about one-half the value of 
the initial tangent modulus. The rate of increase of *f~   with jf' for 
deformations greater than ^c becomes so small that for all practical 
purposes, the material is plastically deformed beyond this limit. 

The application of equations (66)  to (86) for a supporting material 
such as clay is admittedly an approximation. Nevertheless, the resulting 
bending moment is a much more reasonable estimate than that which would 
be obtained by considering the supporting material as rigid. Furthermore, 
it can be shown that if the estimate of E& is in error by as much as 50 
per cent, the resulting error in the estimated value of A^ and /*?/»*»>• is 
less than 12 per cent for values of JE"e   of the order of 10,000 lbs./ft.

2. 

The value of M0tf.    , on the other hand, is not as accurate. The 
value of Mtf/j*   is proportional to 

141 &I 
1>     D 
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The quantity inside the radical represents twice the apparent modulus of 
resilience of the supporting material. (Actually a material such as clay 
suffers a permanent deformation even for ^<u-c  , so that the true 
resilience is less than this.) An error of 50 per cent in the apparent 
modulus of resilience will lead to an error of about 25 per cent in 

APPLICATION: SAG OF A LIQUID FILIED TEN-INCH PIPE 

An Example of Free Sag 

Suppose that the proposed route of a ten-inch pipe line traverses a 
band of extremely soft sediment, which is about 500 feet wide and about 
12 feet deep at the anticipated crossing, and is several miles in length 
transverse to the pipe. The weak sediment is sandwiched between two 
extensive reef bodies, consisting of uncemented oyster shells in a clay 
matrix. 

Tests carried out in the, field disclose that the weak sediment has a 
bearing capacity of only 70 lbs. per ft. for a coated section of the pipe*. 
The base pipe is 10 inches O.D. with 1/2 inch steel walls, 5/8 inch coat- 
ing of Somastle, and 1 inch coating of concrete for protection. Its 
weight per unit length is estimated to be 95 lbs. per ft. when loaded with 
liquid petroleum. This takes into account the uplift due to the moisture 
content of the sediment, which is 1+3.7 lbs. per cu. ft. The reef material 
has a bearing capacity significantly greater than the submerged weight of 
the loaded pipe. Consequently differential sag of a 500 foot section of 
the pipe would occur under these conditions and may lead to severe 
stresses in the pipe. 

To avoid this situation, two alternatives present themselves: (1) re- 
route the pipe line so as to by-pass the weak sediment zone, or (2) en- 
trench the pipe to a depth of about 12 feet within the reef zones so as to 
reduce or eliminate the anticipated vertical distortion of the pipe. 
Either of these alternatives might be costly, and therefore it is worth- 
while to determine quantitatively if the pipe could be allowed to sag with- 
out danger of overstressing. 

This bearing capacity corresponds to a maximum shearing resistance 
of the sediment of roughly 30 lbs. per ft.2. 
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The specifications of the pipe are summarized below: 

I.D. Steel = 9 in. 

O.D. Steel = 10 in. 

Overall D 
(protected) = 13 in. 

As . ifc.9 in.2 

I = 169 in.1* 

t = 3.56 in. 

El = 35.2 x io%>.ft.2 

Elf    =   9.85 x 106lb.ft.3 

"K»/h  =   1.U9 

It will be assumed at first that there is no tension in the pipe prior to 
sag, and furthermore that there is no longitudinal slippage of the pipe 
in the supporting reef material. Thus the loading and length factors can 
be summarized as follows: 

ur     = 95 - 70 = 25 lbs./ft. 

ia     = 500 ft. 

ih = 0 (A   = 0) 

Ko = 0 ( r-C= 0) 

Therefore, using equation (20), the flexibility parameter can be computed: 

f - 25 (500)*^ - 159,000. 
9785 x 106 

The total net load of the sagging section of pipe is 12,500 lbs. The reef 
material therefore must carry 6,250 lbs. at each end of the sagging section 
in addition to the load exerted by the pipe line passing over the reef. 
If the reef material is extremely stiff then possibly this load could be 
carried without significant distortion of the reef material. If so the 
rigid end condition, G, = 0, might apply. However, if the reef material 
has a bearing capacity of only 120 lbs. per ft., then the material would 
be plastically deformed. The upward net load on the pipe would be about 

367 



COASTAL ENGINEERING 

25 lbs. per ft. in the reef material, and the moment would be released 
altogether at the ends of the 500 foot section. The moment distribution 
and deflection of the supported pipe would be similar but opposite in sign 
to that occurring in the unsupported pipe section. This condition rep- 
resents the end condition for which ~h1   - 0. 

Calculations made on the basis of the two extreme end conditions place 
upper and lower limits on the maximum stress that could be expected for 
the situation being considered. Such calculations are presented below: 

Method of Determination Case I:   0, = O Case II:   VH> =  Q 

Fig.  3 
using    6   = 159,000 

Equa. 19 

Equa. W.a 
(   te,   -   k^-l) 

Equa. 1+Oa 

Fig. k 

Y\ 

'of     yi% >   aoo 

Equa. 22 

Equa. 21 

Equa.  52 

Equa.   (5U) 
using (<^ + o^.) 

max 

YI   = 920 =   crj: 

n   = 50.k 

N     = 150,000 lbs, 

% 
= 5.33 ft. 

n = 1,000 = o~t 

r\ = 31.7 

N = U1,000 lbs. 

% = 5.53 ft. 

Qt = .0398 rad =2.3° 

vr)     = -.0153 

m     = .00108 mo    = .000995 

M,   = -95,500 lb.-ft. 

M0    = 6,750 lb.-ft.      Ma    = 6,220 lb.-ft. 

K)     =5,620 
^    'max 

(using yyi, ) 

C%+ St) - ^2>650 psi 
max 

occurs at ends 

(9y   -256 J
max 

(using mo ) 

(<V>-^)= 121,0 

(%+S^ 11,670 psi 
max 

occurs at center 

If the elastic limit of the material in tension is in the neighborhood of 
50,000 psi, then the value of maximum stress for the condition 8, ~   & 
indicates that the assumption of elasticity has been transcended, and the 
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value of stress is quantitatively in error but qualitatively is in- 
dicative of an unsafe situation. Actually, the maximum stress will lie 
somewhere "between the limits 11,670 psi and 1+2,650 psi, depending upon 
the strength characteristics of the supporting reef material. 

To test whether or not S^+S^ is the maximum combined stress, the 
value of shear stress must he computed. For the case rigid ends, Ss is 
a maximum, since the entire net vertical load of the pipe is carried by 
shear and none in tension at the ends. This end shear is 6,250 lbs, so 
that Ss = lv20 psi (from equation 1+7). The value of Sy   is 3l+,000 psi 
(from the value of o% given above), consequently -4-£s£)""/S^, is only 
about 20 psi. From condition (A) of Table IV, this means that the combined 
stress Sfa+f»fc does govern in this case as presumed, since it is very 
unlikely that the hoop stress is greater than 1+2,650 psi (this would re- 
quire an internal pressure of about l+,7l+0 psi in excess of the environ- 
mental pressure outside the pipe). 

The value of sag for the case of plastic yielding of the supporting 
material will be greatest. For the end condition ~ryi,  = 0 the center of 
sag will be 2^M below the equilibrium position of the pipe or about 
11 feet for the situation above. This is less than the depth of the 
weak sediment zone in this case and therefore the situation is truly one 
of free sag. 

Effect of Initial Tension for the Rigid End Condition 

A reduction in temperature of a very long pipe line below that at 
which the pipe was initially installed can induce an axial tensile stress 
in the pipe if the longitudinal restraint provided by sediments and 
protecting coating inhibit the contraction of the pipe.* For a 50°F change 
in temperature, the maximum thermal stress which can be induced in the 
steel is about 9,750 psi. In the 10 inch pipe examined above, this is 
equivalent to an axial tensile force of N0  = 11+5,000 lbs. 

What affect would an initial tension of this magnitude have on the 
sagging section of pipe with rigid end conditions? 

For the case of no end slippage as before ( -a =0,  ka. = 1), the 
value 71*" must be evaluated from the equations (28) and (29): 

n* = 
a- 

From equation (23), using the value of M„ above: 

"Ylo"3"  = 1,000 . 

For the case of initial compression see Summary and Conclusions 
and also the Appendix.      339 
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For the case of wl, =0, A   = 1,500 from Figure 3; however for the case 
of ©i = 0, the value is probably somewhat less than this. Using 

*>'*' = 1,500 as a first approximation, the value of J^O") can be found 
from the dashed curve in Figure 3 by reading the value on the <3r scale 
corresponding to the value -y)'"above. This yields J~,Sn)  = 320,000. 
Using this estimate of jf, (n)  , together with the value of fy  already 
computed, a second approximation of /7s-  can be found as follows: 

J&  _   1000 
^'r. ff£.nnnl2,-l»>. 

1  L320,000j j 
A third approximation following the same procedure, but using the mean 
value of the first and second approximations of -TJ *~ to find ^fl) , 
yields: 

?i   = moo, 

which is sufficiently accurate. Thus from equation (19) the final tension 
N  is 197,000 lbs. This is an increase of only 52,000 lbs. above the 
initial value, and the sag corresponding to this, from equation (WLa), is 
only 3.5 ft. 

The value of maximum stress is found to be Ul,100 psi, which is only 
slightly less than that found for the case of zero initial tension. The 
reason for the small difference in stress is that the increase in pure 
tensile stress is offset by the reduction in bending moment for the higher 
value of tension parameter. 

Effect of End Slippage 

In the previous computations it was assumed that the slippage was zero 
{A = 0, or M-3.  = l). Strictly speaking, this requires an indefinitely 
large value of longitudinal restraint y>- j however, in the problem being 
considered, if ^ is about 50 ur  or 1250 lbs. per ft., then M%.  would 
differ from unity by only 10 per cent. For the 10 inch nominal pipe   , 
entrenched in the supporting material, this would require a value of "TTu. 
(equation 16) of approximately U00 lbs. per sq. ft., which is not unreasonably 
large. 

Suppose now that ./> were only 25 lbs. per ft. (Jj./ur = l). This 
situation could obtain for a 10 inch pipe resting upon the supporting 
material (but not entrenched), provided that the coefficient of friction 
between the pipe and the underlying material were about 3/10. 

The slippage coefficient is given by equation (hi): 
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* = ii r^x^x^pA _ 89A 
25 I  25 x 0.20   J 

For the case of no initial tension and zero end slope, equations (28), 
(29) and (30) reduce to 

, I S<\. 000 
fin)   = 2  

„ .3- 
where <*- is taken as 159,000 as before. The value of n     will be lower 
than in the case of no slippage; however, using *7*~  = 920 as found 
previously, the approximate value of J/n)  is 1*7,000 as computed from the 
last equation above. This corresponds to a value of /I *~ of 380 (Figure 3), 
which is the first approximation of M0".    Using this value, a second 
approximation, /?*"= 510, can be found by the same procedure. The true 
value of rl *~ , which represents a root of the equation, 

F(n)   =  i,(«) ^fi~+ '
OU7

-  
ni~' ~ \G%°oo = o^ 

must lie between the first and second approximation. 

It is found that 

F(yi)   m -51A00, for KI
2

" = 380 _, 

and 

F(n)  = 22,300, for Y\~'» 510 . 

Hence the root as found by linear interpolation is 

n?~= few (51° " 580) • ^7° 
If this is carried one step further a value of 1*80 is found to satisfy 
p-£yi) = 0 more closely. This is of sufficient accuracy. 

Using XV** • W30 (or n   = 21.9) the value of k^  is found to be 
2.52, and the maximum sag (equation kle.)  is 

U  = 0.626 x 2.52 x 21.9 x 0.28 = 9.7 ft. 

From Figure k,  a value of YA ,   of -.021 for the case of ©i = 0, is 
obtained. The tension and bending moments evaluated from the value of 
Y) *- and rvi, above are 67,600 lbs. and -131,000 lb.-ft. respectively, 
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Finally the stresses can be computed (equations k-5 and 1*6): 

Sy    = lf6,800 psi, 

S^   =   l+,500 psi, 
and 

sb+s< 51,300 psi. 

The value of maximum total stress is about 20 per cent greater than in the 
case of no end slippage. In many cases the end slippage will have 
considerably less affect - the case examined here probably represents an 
extreme condition of slippage. 

If both initial tension and end slippage exist, the problem of 
determining n9" can be solved by successive approximation in a similar 
manner. 

Modified Rigid Ends 

It was stated that the maximum stress in the 10 inch pipe will lie 
between the limits 11,670 psi and h-2,6^0 psi (for the case of ^ =0, 
Vl©3" =0) depending upon the strength characteristics of the supporting 
material. Two different conditions of elastic deformation of the support- 
ing material are examined here in order to give a more realistic idea of 
the stress. 

For the case of /O   =0, ^o =0, the value of N   was found to be 
150,000 lbs. for the rigid end condition and 114-1,000 lbs. for released end 
moment. The mean value 135,000 lbs. will be presumed for the case of 
elastic deformation of the supporting sediment investigated below. 

Suppose that the supporting material has an effective modulus (Ee ) 
of 12,000 lbs. per ft.2; this is representative of the somewhat stiffer 
soft clays of the Atchafalaya region. If the value of J-c for this 
material is not exceeded then equations of elastic deformation will apply. 

The following characteristic parameters are evaluated from equations 
(68) through (70b): 

Y = 0.10, 

06 = .136 ft."1, o^= .0185 ft."2, 

fi = .101 ft."1, 

j/ = .0913 ft.-1, 

Jt.&.»«. 
372 



SOME OCEANOGRAPHIC AND ENGINEERING CONSIDERATIONS IN MARINE PIP 
LINE CONSTRUCTION 

Thus the pipe deflection in the elastically deformed supporting material 
is in the form of a non-critically damped sine wave (since ~y< l) with a 
wave length of 69 ft. If the supporting reef material is at least 69 ft. 
wide then the elastic theory as given here is applicable. 

From equations (lk)  and (75) it is found that 

Fy,t » 16.5 fa . 
and 

l*W =232 h    . 

It is seen immediately from these relations that a supporting material with 
an J^    of only 100 lbs. per ft. could not possibly support the load or 
moment indicated by the condition of rigid ends. It will be found that the 
value of «-?i must be about 20 times greater than this if the supporting 
material is to be free of plastic deformation. 

The next step is to compute £L , b   ,  and /-"  using relations (83), 
(820, and (85): 

&   m 2.18 x 106, 

b    - 95,500, 

F*'"= 779,000 lbs. 

Inserting these values in equations (80), (8l), and (82) yields: 

M,   = -^9,100 lb. ftv 

0,   » .0207 radians _, 
and 

u,'t  = 0.15 ft. 

The deflection J^,    = 0.15 ft. represents the extreme value of elastic 
distortion of the supporting material in this case, so that the lower limit 
of J-     is c 

j£ = 12,000 x .15 = 1800 lbs./ft. 

This would require a shear strength ( "Cu )  of at least 830 lbs./ft.
2 (if 

/?    is taken as 2.0, equation 2). 
b 

From equation (86), the condition of maximum moment requires that 

and from equation (72): 

= -1.95 radians 

JSA = 0.735 
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Thus the position of maximum moment from the end of the weak zone is 

Jm  =    C" ^3A   - 2.8 ft. 

Using equation (85) the maximum moment can now be computed: 

Finally the maximum total stress can be computed 

S^i- St   - 28,250 psi. 

A similar analysis for the case of E&    = 2,000 lbs./ft.2 leads to a 
somewhat smaller total stress. The results of these computations are 
summarized in Table VII. In this case the pipe deflection in the supported 
zone is still a non-critically damped sine wave, but the wave length is 
about 120 ft., indicating that the distortion of the supporting material 
is spread out over a greater length along the pipe, leading to a re- 
distribution and reduction of the maximum bending moment. The strength 
^/-c.   required in this case is at least 7^0 lbs./ft. or greater, in order 
that the supporting material is truly in an elastic state of deformation. 

All of the computations for the example of free sag in a 10 inch pipe 
line of 500 foot sag length are summarized in Table VII for convenience of 
comparison. As mentioned previously, the condition y?1t  = 0, or complete 
release of the moment at the ends of the weak zone, represents the special 
condition of plastic deformation of the supporting material, for which 
J-c  = UT = 25 lbs./ft. The problem of partially elastic and partially 
plastic deformation of the supporting material has not been investigated. 

An Example of Restricted Sag 

In the previous example the amount of total sag was found, for each of 
the end conditions investigated, to be less than the depth of the weak 
sediment zone (as measured from the equilibrium position of the pipe, which 
occurs at moderate horizontal distance from the weak sediment zone). The 
example therefore was truly one of free sag. Suppose now that the width 
of the weak zone is ten times that of the above example, i.e. ~£0   = 
5,000 feet or about 1 mile. A ten inch nominal pipe will again be considered 
but in this case it will be presumed that the net downward unit force on 
the pipe, ur , is only 10 lbs. per ft. Thus if the pipe were to sag freely 
in the weak zone of sediment, then the supporting material at the ends would 
have to carry a load of 25,000 lbs. at each end of the sagging section, 
which is only about four times that considered in the previous example. 
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TABIZ VII 

SUMMARY OF COMPUTATIONS OF FREE SAG FOR A TEH INCH STEEL PIPE: 

Net downward load in weak sediment 25 lb/ft (v) 
Width of weak sediment zone 500 ft (/) 
Pipe data: El = 35.2 x 10° lb ft2 

As » 11*.9 in
2 

D o 13.0 in (protected) 

Initial Tension 
End Slippage 

n 2 a 0 
«*°   -0 fr> 50 w) 

n02 . 1000 
4,    - 0 

n2 . 0 
fr/w = 1 

State of Adjacent 
Sediment 

Plastic De- 
formation 

Elastic 
Deformation Rigid ' Rigid Rigid 

End Cond. Hx = 0 — - — 6l-° ex -0 v° 
Ee (lbs/ft2) Q'K HHH 2,000 12,000 00 00 00 

N0 (l*s) 0 0 0 0 11*5,000 0 

N    (lbs) 11*1,000 135,000 135,000 130,000 197,000 67,600 

M    (lb ft) 
0  v           ' 

6,220 6,500 6,500 6,750 l*,500 13,100 

J^ (lb ft) 0 -3*^00 -1*9,100 -95,500 -78,700 - 131,000 

M      (lb ft)* 
max 

+6,220 -1*0,700 -5U,000 -95,500 -78,700 - 131,000 

St (psi) 9A50 9,050 9,050 8,650 13,200 ^,500 

^mx (*8i> 
2,220 ll*,l*50 19,200 3U,000 27,900 1*6,800 

y2' <«0 5.5 0.37 0.15 0 0 0 

ym (ft) 5.5 5A 5A 5.3 3.5 9.7 

©1 (rad) .0398 .0275 .0207 0 0 0 

fc (lb/ft) 25 £ 7V0 ^1800 CO 00 00 

-^ (ft)*** 250 28.0 12.9 0 0 0 

A (t>» +250 7.3' 2.8' 0 0 0 

yi + ym («) 11.0 5.8 5.6 5.3 3.5 9.1 

(St + Sb)m (psi) 11,670 23,500 28,250 42,650* ** 1*1,100** 
1 

51,300** 

* Maximum moment occurs'at distance *** Equilibrium level of pipe 
^w from end of weak zone (or reached at distance S£t 

*£„/a.     +£»,  from center of sag) from end of weak zone 
** Stress which would exist if the elastic limit **** Limiting case of /f / = 

of the material were great enough /w/ 
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However the flexibility parameter, ^- , (using the same values of E, I, 
and r as before) is 6.3^ x 10° or It-,000 times greater than before. For 
such an extreme flexibility, the pipe acts as a flexible cable and the 
asymptotic equation (36) can be used to compute the tension parameter. 
In fact for ^ = 0, 7^*" = 0: 

I <4tf J 
and according to equation (l+lfl) the maximum free sag, ^<C*r, would be about 
89 feet! The tensile stress due to elongation alone, according to 
equation (37a) and/or (U6),would be 2U,200 psi, and if the end conditions 
are considered rigid then a maximum total stress of over 100,000 psi could 
be developed (see Table V). 

It is inconceivable that an extremely weak sediment zone of a depth 
comparable to the computed free sag above could exist. Consequently the 
pipe will actually sag until it rests upon the firmer sediments at the 
base of the weak zone, and the full elongation of the pipe, expected in 
the case of free sag, will not be realized. 

Suppose that the average depth of the weak zone sl0     (Figure 2A) is 
10 feet. If the adjacent supporting material is of sufficient strength, 
then the difference h0-h   will be small, and hence h     can be approximated 
by ho   • Consequently, under this condition the relative depth h/h   will 
be 35.7 and according to equation (6l) the tension parameter for the 
length of pipe ^e

y   (Figure 2B) will lie in the range: 

255 < (rtf< 893, 

provided that no initial tension existed preceding the sag of the pipe in- 
to the weak zone. 

5,000 

(58a) 

For the condition <£• » 6.3k x 108 ( ur = 10 lbs./ft. and j£.  = 
l ft.), equation (58; reduces to 

L2.55-    J n' 

Using the range of ifC)  stated above as a guide, the appropriate root of 
this equation can be ascertained by successive approximation, or by 
graphical procedure. Since in this case the unrealized free sag is much 
greater than the depth of the weak sediment zone, it is expected that the 
ratio sto/l6  will be quite small. Consequently, the value of Crt')3' will 
probably lie closer to the lower limit 255 than to the upper limit. Using 
this as a starting point, the value of J^trt')  as determined from Figure 
3 is 20,500 (full curve labled nd*- = 0;     J^ClO read from the 0.  scale). 

376 



SOME OCEANOGRAPHIC AND ENGINEERING CONSIDERATIONS IN MARINE PIPE 
LINE CONSTRUCTION 

By evaluating the approximate value of the ratio J-^flO/rt'     (using *7 '  = 
16), a first approximation of ^7^*'can then be determined explicitly from 
(58a). This yields ^/2'= 350. 

A second approximation evaluated in the same way but using &')    = 350 
to obtain ji{n')/r>J  yields (fr')7~'=  36O. The convergence to the final 
value is quite rapid in this case (a third approximation yields the same 
result to within one per cent accuracy). 

Using On')    = 36O, the length ratio --<£ /#„   according to equation 
(59) is .082. or ^/  = 1+10 feet. The tension accordingly is 75>500 lbs. 
(equation 60), which corresponds to a tensile stress, S^  , of about 
5,100 psi. The above tension actually applies to the case where the moments 
at both ends of the section ^/  are zero. However it will be noted that 
for the value of fy'  corresponding to &'J*~ =  36O, the values of &7'J*' for 
the two extreme end conditions differ by only 20 per cent (Figure 3). 
Consequently it is presumed that the tension found above is approximately 
valid for different end conditions which might be considered. 

If it is supposed now that the supporting material adjacent to the 
region of sag is quasi-rigid so that the pipe is essentially horizontal, 
then the moment factor at this end is given approximately by equation (63). 
Using (fi'J^^  360 and <fr' as found from equation (6k)  ( 4//J'*   = .082), 
the calculated moment factor is about -.0^7, and the corresponding bending 
moment is about -79>000 lb.-ft. (equation 62b). This corresponds to a 
maximum bending stress of 28,000 psi and consequently the maximum combined 
stress in the pipe is approximately 

(\  + St) = 33,000 psi. 

It will be noted that this applies for the case of ~720     =0, ^> =0 and 
<£>, = 0. 

The effect of end slippage and/or elastic deformation of the support- 
ing material could be carried out in a manner similar to that already 
presented in the problem of free sag. However, due to the complexity of 
the restricted sag problem and the nature of the approximations already 
made in this application, it would appear that such refinements are not 
justifiable, unless the asymmetry of the section ^€/  is likewise taken 
into account. This would require re-examination of the basic equation (k) 
and its solution (8); for in this case a finite shear Ya    would exist at 
the center of the sagging pipe section. 

On examining the question further, a better approximation might be 
had by considering the section -^/ as one-half of a symmetrical, freely 
sagging section formed by deleting the section of pipe which is fully 
supported at the base of the weak sediment zone. The difficulty in applying 
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the free sag theory in this case is that there exists a finite shear 
and zero moment at the point of tangency, while the free sag theory presumes 
no shear at the center of sag and yields a finite bending moment at that 
point. 

SAG OF A TWENTY-INCH PIPE 

The specifications of a 20.5 inch O.D. steel pipe (thickness J>/k  inch) 
are given in Table III. The value of the product Elf-  for this pipe is 
275 x 10° lb. ft.2. If this pipe has a 5/8 inch coating of protective 
Somastic and a 1 inch coating of reinforced concrete, the total weight in 
air (gas filled) would be about 269 Ihs. per ft. The over-all diameter 
of the protected pipe would be 23.75 inches. 

It will be presumed that this pipe sags into a weak material identical 
to that discussed in the case of the ten inch nominal pipe. This implies 
that if the bearing capacity of the sediment is proportional to the diameter 
of the pipe, as equation (2) indicates, then 

^ =t = ft^S * 70 = 128 lbs./ft. 13.00 

Furthermore the bouyancy due to moisture content of the sediment (for an 
entrenched pipe) would be 13k lbs./ft. ( 33 = ^3.7 lbs./cu. ft. as before). 
Thus the net vertical force u->- per unit length would be only 7 lhs. per ft. 
for a gas filled pipe. This is of the same order of magnitude as the 
errors involved in the estimate of TU.   and/or 33 . Consequently one should 
investigate the influence of the possible error in uJ-  on the resulting 
stress, in order to see if the computation leads to an unqualified decision 
regarding the vertical stability of the pipe. 

If the pipe is to transport liquid having a specific gravity approach- 
ing that of water, then the value of ur would be about 130 lbs. per ft. 
For a given span length of sag, it is evident that there will be considerable 
difference in the maximum pipe stresses induced by these two limiting 
conditions of loading. Computations based on these two cases, for a span 
length of 500 feet (for comparison with the example of free sag of a ten 
inch pipe), are summarized below. 

Free Sag of a Gas Filled Pipe 

In this case ur = 7 lbs./ft. and J.0   = 500 ft., which yields a value 
of ^- equal to 1590. The corresponding value of Yi~*- from Figure 3 is 19.2 
for the conditions: A   = 0,  ".^s 0, and &t   =0. The maximum sag, 

yy,, under these conditions is only 1.6 feet. Furthermore from Figure k, 
lyy,  = -.065,  and the computed stresses are: 
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Sfa     = 6,200 psi, 

S±    m     800 psi, 

St+St - 7,000 psi. 
and 

The maximum combined stress of 7,000 psi would occur if the supporting 
material at the ends were rigid; otherwise the maximum stress would be less 
than this. However any slippage at the ends would tend to increase the 
stress (as found in the case of the ten inch pipe). 

If the probable error in UT is taken as + 7 lbs./ft., it is evident 
that the value of expected stress ranges between the limits of zero and some 
upper limit. Figure 6 can be used to facilitate the computation of this 
upper limit. By doubling the value of ur , and hence <a_, the dimensionless 
combined stress parameter (for &,   = 0) is increased from about 170 to 290. 
The combined stress itself will be increased in the same proportion, 
consequently the upper limit is about 12,000 psi. This indicates that an 
error of even + 100 per cent in the estimated ur , in this case, would not 
invalidate a qualitative decision with regard to the safety of this pipe line. 
Such clear cut results, however, appear to be the exception rather than the 
rule, and the decision regarding safety usually must be qualified by a state- 
ment regarding the degree of risk involved, unless positive steps are taken to 
avoid, partially or completely, the conditions of sag which are anticipated. 

Free Sag of a Liquid Filled Pipe 

In this case uT = I30 lbs./ft. and X0  = 500 ft., yielding a value 
of <fy-  of 29,800. The value of n3-  is found to be 270 for the conditions 
&  = 0,  >10

a-= 0, and &,   =0. Corresponding to this, the maximum sag 
is 5.98 feet, which is very nearly the same as for the water filled ten inch 
pipe. 

The resulting stresses induced by sag are: 

Sb - ^7,700 psi, 

St = 11,000 psi, 
and 

Sb+St = 58,700 psi. 

An error of + 7 lbs./ft. in ur  , in this case, represents a relative error 
of only +5.^ per cent; and the corresponding error in the combined stress 
is only about 2/3 of this or 3.6 per cent. Under these conditions the 
maximum combined stress above is presumably accurate to within + 2,100 psi. 
This would not influence the qualitative interpretation of this"~result, nor 
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would the effect of an error in us   of as much as + 20 lbs./ft. 

The magnitudes of stresses involved in these two examples bear out, 
quantitatively, the extremely different situations which might be realized 
for a gas filled pipe on one hand and a liquid filled pipe on the other. 

SUMMARY AND CONCLUSIONS 

In the planning and installation of a marine pipe line, the question 
of vertical stability can be important enough to warrant serious consideration 
especially if the pipe is to be laid upon or entrenched within a marine 
sediment of the type existing on the Gulf shelf. The important points 
pertaining to this question are set forth below. 

1. A knowledge of the structure and strength of the sediments along 
the path of a proposed pipe line is essential if definite conclusions are 
to be reached regarding the question of vertical stability of the pipe. 
Regions in which the sediment bearing capacity is not sufficient to support 
the submerged weight of a pipe line can be disclosed only by appropriate 
investigation in the field. 

2. The difference in strength characteristics between extremely weak 
zones and adjacent supporting material, together with the horizontal and 
vertical dimensions of the zone of weak sediment along the path of the pipe 
line, are the prime environmental factors in the determination of differential 
sinking of a pipe and consequently in the determination of the maximum 
stresses associated with such sag. 

3. In general the determination of the stresses induced by sag depends 
upon the following basic parameters: 

^j. determined by pipe weight and by the 
weak sediment characteristics 

dimensions of the weak zone 

F" T A t- PiPe specifications (actually tvL-H* r       r=-vx7^) J > 

initial and end conditions iJ      L     C    c initial ana ena conditions 
»j f)^;^  (rigidity factors of supporting 

material are ^ and £g ) 

For the case of free, symmetrical sag, the following functional relations hold 
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HI 7- 

n^= H±? = ft(o^^end rigidity), 
El 

YV\ = _£L =, F<n) 
url o 

1 I" Hn) 

and f j-Cn) 

0     —    . £.    Flexibility parameter; 
tr      Eif- 

\'4 

where 

) s£>    = ~(r . \ , End slippage parameter; 

n5" = ^° -^°    Initial tension parameter. 
*   ~ El     J 

If the end slippage is zero then 

8,    =     P..a-4 
CtUU. 

If in addition INJ0 = 0, then 

This implicit equation for Y\    in terms of <^y is represented graphically in 
Figure 5, and in tabulated form in Table VIII, for two different end 
conditions. The relationship  yn = fjj/n) is shown graphically in Figure it-. 

k.    The dependence of maximum combined stress on flexibility is shown 
conveniently by the non-dimensional plots of Figure 6. The dimensionless 
stress factor, 

a; + err s 
E t • <s« H^- &)> 
381 



COASTAL ENGINEERING 

is presented graphically for the two limiting end conditions 6, = 0 and 
M, =0 and for the case of no initial tension and no end slippage. The 
stress parameter increases in direct proportion to CU  for very small values 
of CL.  , corresponding to the theory of simple flexure ( S^. = 0 or H   = 0). 
For very large values' of 4. , the stress factor becomes proportional to 
CLJ"'^ ,  corresponding to a flexible cable. The proportionality coefficient 
in either limiting case depends upon the end condition. It is important to 
note that the condition of no end moment leads to the greater stress for low 
values of O^- ;  but the situation is reversed for large values of CL-   ( > 280) 
since the condition of rigid ends in this case leads to greater stress. In 
summary, for small flexibility: 

m x        [ iw»( = J ,  for m{ = 0 j 

while for large values of CL   : 

/o *\      U Tr t^M^tik  = 1-5W' f°r 9t = ° 
V b  Hn   L  v- H* ' J I fe = 0.3V7, for m,  = 0 

5. In general the sagging pipe section will carry its load by the 
vertical component of tension as well as by cross-sectional shear. For small 
flexibility, however, the tension is negligible and the load is carried 
entirely in shear. As the flexibility is increased the tension becomes 
more and more important, and in the limiting case of extremely large 
flexibility ( >   10^), the pipe carries its entire load by tension, except 
in the case of rigid end conditions, where the shear is still important but 
only immediately adjacent to the ends of the sagging section. 

6. The situation of free sag is subject to the condition that ^.yfl<h . 
If this is not the case then the pipe can receive additional support at the 
base of the weak zone. The problem of such restricted sag can be solved, 
in the first approximation, by considering the unsupported portion of the 
pipe at the ends of the sagging section as a situation of symmetrical free 
sag. The length of this equivalent free sag section is unknown in this case, 
but can be determined if h is known. 

7. Two clear cut end conditions have been examined in some detail: 

(i)  No end slope, representing the condition for which 
the supporting material is nominally rigid and 
free of any significant deformation, implying that 

| ^c/ur (  is very large (>1000); 

and 
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j £eV|=  is of the order of unity 

(II) No end moment, representing the condition for which 
the supporting material is plastically deformed 
at the ends by the amount h„-~U    = U >  which 
requires that ^ 

IV- or |  = 1, 

and 

The intermediate case of quasi-rigid conditions, representing that of finite 
elastic distortion of the supporting material, has also been examined. 
Values of j^. and E&  intermediate between the values above can be taken 
into account in a correction factor to be applied to the bending moment for 
a rigid end condition (equation 80). The effect of distortion of the 
supporting material at the ends of the sagging section of pipe is always 
to reduce the maximum bending moment induced in the material. In the 
examples worked out for the 10 inch nominal pipe, the limiting case of plastic 
distortion which was examined gave a value of maximum stress which is about 
25 per cent of that which would be realized for rigid ends. The effect 
of elastic distortion of the supporting material is less pronounced. 

8. The effect of end slippage is to exaggerate the severity of the 
maximum combined stress. The tension in this case is reduced but this, in 
turn, is associated with a greater proportionate increase in bending moment. 

9. The effect of initial tension is to decrease the severity of the 
maximum combined stress, since the bending moment is decreased in greater 
proportion than the increase in tension. 

10. The effect of initial compression has not been examined in the 
examples, but would lead to an increase in the severity of the maximum 
combined stress. Although the equations for free sag given here are restrict* 
to the case of positive /V (real values of H   ), the same restriction is 
not imposed upon /V0 . That is, negative values of /V0 (or initial 
compression) can be taken into account provided that this compression is not 
too great (see Appendix). Such compression could be induced by a sudden 
temperature increase in the pipe line, if the latter is inhibited from 
expanding in the longitudinal direction. In the event of sag, this 
longitudinal compression is released and in turn a tension will be developed, 
provided that the loading is great enough. 

A ten inch nominal pipe under the same conditions of sag as presumed for 
the data of column 6 of Table VII except that r\^~  is -1000 (corresponding 
to 1^5,000 lbs. initial compression) would yield a maximum combined stress 
of W>,200 psi. The maximum sag in this case would be 7.2 feet, which is 
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about twice that found for the case of 11+5,000 lbs. initial tension. How- 
ever the combined stress is only about 10 per cent greater. 

11. The examples of sag worked out for the liquid filled 10 inch 
and 20 inch nominal pipes serve to demonstrate that considerable stresses 
can be induced by sag of the pipe into a zone of extremely soft sediment 
(such as found in the Atchafalaya Bay region) if such a zone is contained 
between material which is considerably stiffer. 
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APPENDIX I 

Figure 3 is not in a form that is adequate for actual use. In order 
to make it convenient for the plotting of the functions J-, £n)   and 
J-^C^l)   on a detailed, large scale logarithmic grid, the computed values 
of these functions for the selected values of n    used in the construction 
of Figure 3 are given in Table VIII. These values, obtained from equations 
(32) and (33) have been evaluated by computing machine for the lower 
range of /7 and by slide rule for the values of /I    greater than k.    The 
values are considered accurate to within + 0.5 per cent. 

In construction of the logarithmic plots of the functions J; Cx)    and 
J-a.fn)   it is convenient to construct the straight line asymptotes given 
by equations (35a,b) and (36) as a guide. 

Isolines for both positive and negative values of rto      can be plotted 
on the y) *~ versus £L   diagram by making use of equation (28) for the 
case of sd   • 0:  * 

n   = y( - tt*/"*-" kr>) 
2- 

The isolines for the case of negative XI*      will lie to the right of the 
curve for ^fc,** =0, i.e. the curve £L, = Jfaj   , and will be asymptotic 
to the latter curve for large values or £L*  .    For small values of s? *- the 
isoline for negative stj*-  will approach a constant value of <Z   , having 
the value: 0 

2h6  |rC1 , for 6, =« 0; 

or 

1^.90 )>d , for m, = 0. 

Thus for a given value of <^- it is seen that there is an upper limit of 
initial compression beyond which the present theory fails to give a solution, 
because y\*~  itself becomes negative. 

If rt0  is just at the critical value for a given <^- then the 
tension parameter is zero, and the stress in the pipe is purely flexural and 
is given by the simple bending theory. This stress is always greater than 
that applying to the case of zero initial compression, as can be seen from 
Figure 6. 
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TABLE VIII 

COMPUTED VALUES OF THE FUNCTIONS f-^n) AND fp(n) 
FOR SELECTED VALUES OF n 

n n2 
fx(n) 

(©1 = o) 

f2(n) 

(»1 = 0) 

.01 .0001 2.1+6 A9 

.1 

.3 
.01 
.09 

21+.6 
73.9 

1+.8 
11+.5 

1.0 
1.3 
2 
3 

1.00 
1.69 
1; 
9 

252 
335 
51+0 
903 

53.8 
71+.2 

137 
275 

1+ 
5 
6 
7 
8 

16 
25 
36 
1+9 
6k 

1,37^ 
1,990 
2,780 
3,790 
5,01+0 

511 
858 

1,380 
2,060 
2,905 

10 
15 
20 
30 

100 
225 
1+00 
900 

8,1+10 
23,200 
50,200 

155,000 

5,'HO 
17,320 
1+0,200 

133,800 

50 2,500 672,000 615,000 

100 10,000 5,120,000 i+, 900,000 

1,000 1,000,000 i+, 900,000,000 l+,900,000,000 
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In the case where the initial tension is greater than the critical 
limit, then N    is negative and the equations for pipe distortion are 
modified. The distortion of the pipe given by equation (8) takes on the form 

where 

N* = 
"El""1 

N   and  X = ~V"N*- 

In the special case where ur = 0, it can be shown that a critical compression, 

exists. If the initial compression is less than this then the pipe is 
absolutely stable with regard to transverse deflection. If the initial 
compression is greater than A/c*" then the pipe will deflect transversely^ 
but in so doing, the initial compression is partially relieved and a definite 
equilibrium with an associated maximum bending moment is developed. This 
situation would represent a condition of quasi-buckling since there is 
but one form which can be assumed by the pipe for a given value of /V„ 
The transverse deflection is not severe unless /\{*   is considerably greater 
than A/*  . 
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APPENDIX II 

LIST OF SYMBOLS 

Symbol 

CL A characteristic quantity in the modified rigid 
end equation 

/\ Cross-sectional area of the steel pipe 

L      Magnitude of maximum bending moment for the case 
of rigid ends 

g      Bouyant force acting on pipe per unit displaced 
volume in the sediment . 

C      Value of 5C* at which ^'=0 for elastic 
deformation of supporting material 

3) Over-all diameter of the protected pipe 

Dj^ Inside diameter of the steel pipe 

D Outside diameter of the steel pipe 

E Elastic modulus of the steel pipe 

Eg     Effective modulus of the supporting material 
at the ends of the sagging section 

S The net upward force per unit length at 
position X'  exerted on the pipe by the 
supporting material 

J-c Limit of ,/ beyond which the deformation of 
the supporting material becomes plastic 

/      The longitudinal restraint per unit length of 
pipe exerted by the supporting material 

J(yi) A function of /? and the end condition 

£(*) A function of n    only, for the condition 
6,    - 0 

y (yi) A function of /? only, for the condition 
*" *t,    m   0 

f Total net vertical reaction exerted by the 
supporting material 

Dimensions 

lb. ft. 

sq. ft. 

lb. ft. 

lbs ./cu, .ft. 

ft. 

ft. 

ft. 

ft. 

lbs ./sq. .ft. 

lbs./sq.ft. 

lbs./ft. 

lbs./ft. 

lbs./ft. 

dimensionless 

dimensionless 

dimensionless 

lbs. 
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Symbol 

F* 

h 

K 

I 

1 

Jt: 

J> m 

J. 

Extreme value of F   which can be sustained 
by an elastically distorted sediment 

A characteristic quantity used in the modified 
rigid end equation 

Acceleration of gravity, 32.2 

Vertical distance between the base of the 
weak zone and the vertical position of the 
pipe at X = -/o/z (Figure 2) 

Depth of the weak zone below equilibrium 
position of the pipe (Figure 2) 

Cross-sectional moment of inertia of the pipe, 
taken about the neutral surface 

Coefficient of proportionality between T^ 
and TJD 

Coefficient dependent upon na / n 

Coefficient dependent upon ^dj n^-Cl, 

Coefficient having the approximate value 
2.2k 

Coefficient having the approximate value 
0.626 

Length of pipe between points ( I ) and ( I ) 
after sag occurs (Figure l) 

Wave length of the non-critically damped 
elastic deformation curve 

Length of pipe between points ( I' ) and ( I ) 
before sag occurs (Figure l) 

Distance from end of weak zone at which 
maximum moment is attained 

Length of weak sediment zone measured along the 
pipe line 

Effective length of free sag in the restricted 
sag problem 

IN MARINE PI] 

Dimensions 

lbs. 

lbs. 

ft./sec.2 

ft. 

ft. 

ft> 

diraensionless 

dimensionless 

dimensionless 

dimensionless 

dimensionless 

ft. 

ft. 

ft. 

ft. 

ft. 

ft. 
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COASTAL ENGINEERING 

Symbol 

»>' 

M 

At, WAX. 

Ult 

2- 

N 

K 

p 'no 

Upper limit of -A> for a given uf and given 
pipe specifications, beyond which the simple 
"bending theory is not valid 

Bending moment factor at position Z? 

Bending moment factor at jg «= o 

Bending moment factor at *f =• ^£0 /JL~ 

Bending moment factor for length ^/e 

Bending moment at position X 

Bending moment at position a£ =• o 

Bending moment at position ;t* = ^a/z. 

Maximum bending moment developed in the pipe 
for given end conditions 

Extreme bending moment which can be developed 
in a pipe in an elastically deformed sediment 

Tension factor 

Initial tension factor 

Characteristic wave number, elastic theory- 

Characteristic wave number, elastic theory 

Tension factor for the length 

Initial tension factor for the length 

Axial tensile force in the pipe 

Initial axial tension prior to sag 

End shear factor 

Ultimate load bearing capacity of the sediment 
per unit length of pipe 

Maximum vertical restraint exerted on pipe by 
the plastically deformed weak sediment 

Dimensions 

ft. 

dimensionless 

dimensionless 

dimensionless 

dimensionless 

lb. ft. 

lb. ft. 

lb. ft. 

lb. ft. 

lb. ft. 

dimensionless 

dimensionless 

ft.-l 

ft.-1 

dimensionless 

dimensionless 

lbs. 

lbs. 

dimensionless 

lbs./ft. 

lbs./ft. 
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Symbol 

/- 

s6 

S.yn 

'tn 

V 

K 
ur 

^ 

Z' 

Flexibility parameter 

Critical value of ^ beyond which the simple 
theory of bending is not valid 

Moisture content of sediment expressed as 
per cent of dry weight 

Radius of gyration of cross-section of steel 
pipe taken about the neutral surface 

Inside radius of steel pipe 

Outside radius of steel pipe 

End slippage coefficient 

Flexural stress in the steel pipe farthest 
from the neutral surface of bending 

Hoop stress in the pipe due to internal 
pressure 

Shear stress associated with Y 

Tensile stress associated with /V 

Maximum combined shear stress 

Maximum combined normal stress 

Cross-sectional shear force at % 

Cross-sectional shear at & =  s£e/z- 

Het downward force per unit length exerted on 
pipe in the weak sediment zone 

Unit weight of pipe in air (including weight 
of contained fluid) 

Horizontal distance measured from the center 
of sag along the pipe line 

Horizontal distance measured from the end of 
the weak zone into the supporting material 

Dimensions 

diraensionless 

dimensionless 

dimensionless 

ft. 

ft. 

ft. 

dimensionless 

lbs./sq.ft. 

lbs./sq.ft. 

lbs./sq.ft. 

lbs./sq.ft. 

lbs./sq.ft. 

lbs./sq.ft. 

lbs. 

lbs. 

lbs./ft. 

lbs./ft. 

ft. 

ft. 
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COASTAL ENGINEERING 

Symbol 

yn 

m Hi 

A 

Vertical distance measured upwards from the 
position of maximum sag 

Vertical distance measured upwards from the 
equilibrium level of the pipe 

Critical value of vertical deflection beyond 
which the supporting material becomes 
plastically deformed 

Maximum sag of the pipe in the weak zone, for 
the length J^ 

Value of u'   at which 6   = 0 

Vertical deformation of the pipe at the 
position %' * 0, or # = J0/*. 

A characteristic wave number, elastic wave 
theory 

A characteristic wave number, elastic wave 
theory 

A tension parameter in the elastic theory 

Horizontal distance between the position for 
which U.' - 0 and 0  - 0 in the elastic wave 

Slope of the pipe at position & 

Slope of the pipe at x = -^>/a. 

Effective slope of the pipe at ends of the 
length J/. 

A characteristic length in the free sag theory 

A characteristic wave number, elastic wave 
theory 

A characteristic wave number, elastic wave 
theory 

3.1kl6... 

Dimensions 

ft. 

ft. 

ft. 

ft. 

ft. 

ft. 

ft.-l 

ft.-l 

dimensionless 

ft. 

dimensionless 

dimensionless 

dimensionless 

ft. 

ft.-l 

ft.-1 

dimensionless 
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SOME OCEANOGRAPHIC AND ENGINEERING CONSIDERATIONS IN MARINE PIPE 
LINE CONSTRUCTION 

Symbol Dimensions 

Os Wet density of the sediment slugs/cu.ft. 

<J~     Flexural stress factor dimensionless 
b 

CT-     Tensile stress factor dimensionless 

*X~ Ultimate shear strength of the weak sediment lbs./sq.ft. 

IT' Ultimate shear strength of the supporting 'u. material Ibs./sq.ft. 
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