VALIDATION OF A DOUBLE-LAYER BOUSSINESQ-TYPE MODEL
FOR HIGHLY NONLINEAR AND DISPERSIVE WAVES

Florent Chazé) Michel Benoit and Alexandre Efn

A two-layer Boussinesqg-type mathematical model hasn recently introduced by the authors with thal guf
modeling highly nonlinear and dispersive waves {hat al. 2009). The analysis of this model h&vipusly shown
that it possesses excellent linear properties,ought= 10 at least, for dispersion, shoaling coeffitiand vertical
profile of orbital velocities. In the present woaknumerical one-dimensional (1DH) version of modetieveloped
based on a finite difference technique for meshirgspatial domain. It is then applied and verifeginst a set of
three one-dimensional (1DH) test-cases for whitheeinumerical or experimental reference resuksaamilable: i.
nonlinear and dispersive regular waves of permaf@mb; ii. propagation of regular waves on a trapéal bar
(laboratory experiments by Dingemans (1994));sfioaling and propagation of irregular waves on meblabeach
profile (laboratory experiments by Becq-Girard kt(2999)). The test-cases considered in this stumhfirm the very
good capabilities of the model to reproduce eite&act solutions, high-precision numerical simulasioand
experimental measurements in a variety of non-limgakwave conditions and types of bottom profilegnhhearity,
dispersion and bathymetric effects are well acaedifior by the model, which appears to possessharatide domain
of validity while maintaining a reasonable levelooimplexity.
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INTRODUCTION

During the past two decades, Boussinesq-type mbadwis emerged as an attractive and commonly
used tool for coastal applications and engineepuagoses. Historically, Boussinesg-type models are
based on two fundamental assumptions, namely weaknearity and weak dispersion (e.g. Peregrine,
1967), making their dispersion properties poornteimediate depths, and limiting the largest wave
height that can be accurately modeled. As a resultstantial efforts have been devoted to extead th
linear and nonlinear range of applicability of Bsinesqg-type models. First, Nwogu (1993) and Wei et
al. (1995) efficiently removed the weak nonlingagtssumption, allowing the model to simulate wave
propagation in intermediate depths with strong mealr interactions. Some years later, Gobbi et al.
(2000), Agnon et al. (1999) and Madsen et al. (200ftcessfully removed the intermediate depth
limitation with so-called high-order Boussinesq#ymodels, whose range of applicability reaches deep
water areas, but with a significant increase in potational cost mainly due to the use of high order
derivatives.

With the aim of developing a model which is apgiieato complex domains (such as coastal areas,
islands or estuaries) and accurate up to deep watewith lower complexity than the previous madel
(i.e. lower order of derivatives and lower numbgequations), the author have recently derivedva ne
Boussinesqg-type model based on a double-layer apprChazel et al. 2009). Assuming the flow to be
irrotational and the bottom slope to be mild, thelyem is formulated in terms of the velocity pdtal
thereby lowering the number of unknowns. The moeeivdtion combines two approaches, namely 1)
the method proposed by Agnon et al. (1999) and resdthby Madsen et al. (2002) which consists in
constructing infinite-series Taylor solutions to th&place equation, truncating them at a finite order
and using Padé approximants, and 2) the double-yeroach of Lynett & Liu (2004) allowing to
lower the order of derivatives. The final model dstssof only four equations both in one and two
horizontal dimensions, and includes only seconaorkrivatives, which is a major improvement in
comparison with so-called high-order Boussinesqetwod

In the remainder of this paper, we propose a loidfine of the mathematical model. Then we
present a set of three validation test-cases inhammzontal dimension (1DH) with both analytic and
laboratory data to assess the nonlinear behaviorténmediate and deep water. We first consider the
propagation of nonlinear and dispersive regular egaef permanent form. The second test is the
classical set of experiments by Dingemans (1994)tli@ propagation of regular waves over an
underwater trapezoidal bar. The third test corredpdo the propagation of non-breaking irregular
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waves over a barred profile by simulating flumeexikpents by Becq-Girard et al. (1999). This last tes
case allows to examine the behavior of the modetpoesent the evolution of the wave spectrum along
the beach profile, with particular attention paidthe growth and decay of super-harmonic peaks as
waves propagate towards the coastline.

BRIEF DESCRIPTION OF THE MATHEMATICAL MODEL

We consider the evolution of an inviscid and incoesgible fluid with a free surface under the only
influence of gravity. The flow is assumed to be tatmnal, and the capillary effects owing to the
presence of surface tension are neglected. Morgaxgelassume constant atmospheric pressure at the
free surface of the fluid. The time-dependent fldioimain is bounded from below by a static sea
bottom, defined byz = Z(X) =-h(X), and from above by a time-dependent free surfderoted by

z=n(t,X). The levelz = 0 corresponds to the still-water level. As showifrig. 1, the fluid is divided
into two layers by an interface = Z2(X) = -ch(X), wherec is an arbitrary parameter to be chosen in

the range ]0 ; 1[. We point out that this divisiofithe fluid domain into two layers is purely coptal
since both layers have the same density. As fiteabathymetry is concerned, we assume that the sti

water depth h verifie{ﬁh| <<1, which corresponds to the classical mild-sloperaximation.

Figure 1. Representation of the fluid domain with a two-layer approach.

Since the flow is assumed irrotational, the probleam be formulated in terms of the velocity
potential @(t, X, z2) of the fluid, along with the free surfaag(t, X), thus lowering the number of
unknowns. The fluid motion is then governed by éguations: one Laplace equation for each layer,
one Bernoulli equation at the surface of each layeee continuity conditions at the interface besw
the layers on the potentigl, the vertical velocityw and the pressurp, two boundary conditions
expressing that the free surface and the bottorb@wading surfaces, and a condition on the pressure
the free surface. Following Zakharov (1968), thiée-dimensional problem can be rewritten as a two-
dimensional problem by projecting the equationstbe free surface and introducing a classical
Dirichlet-Neumann Operator (DNQ@)n, h], such that:

W = gn.hley (1)

where @(t, X)=@,t, X,z=n(,X)) is the velocity potential at the free surface and
W, (t, X) =w (t, X,z=n(t, X)) is the vertical velocity at the surface. This eqignt problem then only

consists in three equations on the potential astinface, the vertical velocity at the surface, tadfree
surface elevation(t, X), where the double-layer modeling is concentratetie DNOg[n, h].

The main difficulty in finding an approximation tihis Dirichlet-Neumann operator is that it
involves solving the Laplace equations along wite boundary and continuity conditions on a time-
dependent domain. An interesting work-around t@ iksue consists in constructing an alternative
Dirichlet-Neumann operator expressed at the stilewlevel called;[h] = ¢[0, h], and then finding a
closure between the unknowns at the free surfadetlaa ones at the still-water levek 0. These
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closure relations are easily obtained via truncataglor expansions of the potential and the velrtica
velocity between the free surface and the stillawdével z= 0, where the truncation orders can be
motivated by a dimensional analysis. An intermegdiatodel —consisting of four equations— is then
obtained by including these two closure relatiarie the Zakharov formulation. The main advantage of
this reformulation is that the translated DiricHdgumann operatogy[h] is static, and can thus be
computed once and for all at 0.

The last step in the model derivation is to cortdtran approximation of the static Dirichlet-
Neumann operatogo[h]. To this end, we follow the generalized Boussinpsocedure introduced by
Madsen et al. (2002, 2003) which consists in logkior a solution of the Laplace equation in each
layer under the form of an infinite Taylor series the vertical coordinate. These series are then
truncated by retaining only the first two termsjstithoice being again motivated by a careful
dimensional analysis. In the last step, we intred@adé approximants in order to lower the ordénef
derivatives in the truncated series. Finally, wéaoban expression of an approximate static Digthl

Neumann operatoggpp[h] which only involves second-order spatial derivasiv
The final model reads as follows:

N 1 2 1 ~ 2 2
di¢hy +§|Vq{)1| = §u'1 (L+|Vnl®) + gn =20,

an+Vn- V(E)] — (L4 |Vn®) =0,

}2 }fi s -
(1 = .)) g i %AJG“-}D‘[»’:}) b0 = ¢1,

Ly

2
x?rl = (—?}A ~+ (1 — %A) g‘a-:pp[h]) (/)Ua

where it is recalled thaﬁ(t, X) denotes the velocity potential at the free surfaset,X) denotes the
vertical velocity at the free surfaag, corresponds to the velocity potential at the stdter levek = 0.
The complete expression qﬁ‘pp[h] is omitted here for brevity (see Chazel e{2009)).

A detailed analysis of the linear properties of thedel (namely phase and group velocities,
vertical profiles of both velocity potential andrtieal velocity, the linear shoaling gradient) Haeen
performed in Chazel et al. (2009). With the optimalue o = 0.314, the previous model exhibits
excellent dispersive properties, up to deep water.

)

NUMERICAL MODEL FOR SIMULATING ON-DIMENSIONAL (1DH) CASES
A one-dimensional (1DH) numerical model has beereliped based on the SCILAB® software
(http://www.scilab.org/ to solve eq. (2). The spatial domain is disceatiavith a constant mesh size,

and all derivative operators in eq. (2) and in #x@ression ofggpp[h] are approximated by centred

finite difference formulas over a 5-point stend@ihis yields fourth-order accuracy in space for histh
order and Z-order derivatives.

Time integration is performed with the standardrfiotorder four-stage explicit Runge—Kutta
scheme with constant time-step. This scheme is kntmarpossess a wide stability region. However,
owing to the nonlinear nature of the considered-dases, this scheme can develop some high-
frequency instabilities for some cases. To avoithsostabilities, aB-order Savitzky—Golay smoothing

filter is applied after each time steprto@ and W, . It was checked that the use of this filter introels

a negligible loss of accuracy of the model.

In order to simulate the behavior of a wave tamtaxation zones are used at both ends of the
domain. These zones can be used either to genecédent —regular or irregular— waves or to absorb
outgoing waves. We refer to e.g. Bingham and Ag{i95) for more details on this method. Finally,
Neumann and periodic conditions are easily impdsedkflecting, respectively evenly and periodically
coefficients corresponding to points located owdite domain, thus making the discretization of the
differential operators very regular.
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VALIDATION TEST-CASES

The numerical model is applied on three differeages for which either numerical or experimental
reference data is available. These applicationsdaseribed in the following three sub-sections. All
computations have been performed with the deeprwidie= 10) optimal values = 0.314.

Stable and periodic nonlinear dispersive waves over a flat bottom

The first test-case concerns the propagation oVl dottom of nonlinear and dispersive periodic
waves of permanent shape. For this situation referesolutions can be obtained by the so-called
Stream Function Method (e.g. Dean 1965; RieneckdrFenton 1981), which is a numerical method
with very high accuracy for such periodic and stabaves.

We choose here the following parameters for theesaa wave length. = 64 m and a wave height
H = 6.4 m, with a water depth = 96 m. There is no Eulerian ambient current & ghmulation. Based
on these values the measure of wave nonlineatiggaess) is = H/L = 10%, or alternativelykH/2 =
110~ 0.31, which represents a quite strong nonlinese.cihe measure of dispersionjis= kh = 3t
or alternatively h/L = 1.5, which is well above the limit traditionaltpnsidered for deep watar € 1t
or h/L = 0.5). Those conditions are thus very demandind@bussinesq-type models.The computational
domain covers one wave-length and comprises 32snfdde= 2 m). Periodic boundary conditions are
used on this case to model the propagation of ¢timsidered wave over a distance of several wave-
lengths. The time-step is chosenTdS0, whereT = 6.094 s, is the wave period as computed by the
Stream Function method. Initial conditions of thewdation are provided by a P@rder Stream
Function solution, provided by the code Stream_IB&npit et al. 2002). This solution is also used
afterwards as reference to compare with the restittse numerical model after several periods ofeva
propagation.

Results for the free surface elevation and freéasarpotential at times= 10T andt = 25T are
presented on Fig. 2 and 3 respectively.
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Figure 2. Snapshots of the free surface elevation (left panel) and free surface velocity potential (right panel) at
time t = 10T. The solid line is the present model with o = 0.314 and the dotted line is the stream function
reference solution.
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Figure 3. Same as Figure 2, but at time t = 25T.
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Comparison of model’s results with the referendetimn shows extremely good agreement up to
time t = 20T, after which small discrepancies become observabileer runs on this case have been
performed by increasing the number of nodes from3% 128 in order to check the grid convergence.
Based on this analysis, the difference observe#ign3 can be attributed to the approximation ia th
numerical model, where™order (and higher) nonlinear terms have been oeglein the final
formulation of the model. However, it is observidttthe agreement with the reference solutionills st
good att = 25T. The shapes of the waves are the same, and theilitades are equal; only a small
phase shift with the reference solution is obser@mnparing the computed and theoretical positains
the wave crests dt= 25T we can evaluate the nonlinear phase celerity ewhich is here 0.08 %
approximately, bringing confirmation of the excalle€apability of the model to handle such dispersiv
(kh = 3= 10) and nonlineafH/L = 10%) waves.

Regular waves over a submerged bar (Dingemans experiment, 1994)

The model is then applied to the propagation ofil@gwaves over a submerged trapezoidal bar by
considering the wave flume experiments performedDiggemans (1994), which often serve as
reference cases for testing nonlinear wave modelghis situation, both nonlinear and dispersion
effects are important. Nonlinear interactions leathe development of higher harmonic components in
the wave train, which are released over the motirideobar and then propagate as free waves after th
bar. Accurate dispersion modeling is thus neede@poesent this decomposition of the incident wave
train. The bottom profile in the wave flume is greted on Fig. 4, together with the locations of 1tie
waves probes where time-series of free surfaceatites were recorded. We model here two of the
test-cases performed by Dingemans (1994), namsly &a(incident wave parametersl = 2.0 cm and
T=2.02s)andcase Bl 4.1 cmand =1.01s).

% (m)
01 0 ? ? Eli § 10 12 1-1 16 I|8 2|D 22 24
’ #2 #3 #5 #6 #? #8 # #10 #]]

IR S I T A

-0.1

z (m)

—-0.2+

—-0.34

-0.4

Figure 4. Bottom profile and position of wave gauges for the wave flume experiments of Dingemans (1994).

Time-series of free surface elevation computed by model are compared to experimental
measurements at stations 8 to 11, which are alktdaicafter the bar. It is known that the signalhase
probes are the most difficult to reproduce by nuca¢models, due to dispersive effects which areemo
pronounced for the super-harmonics released digelar.

Results of case AH= 2.0 cm ;T = 2.02 s) are presented on Fig. 5. For this cas@thident waves
are rather longkh = 0.67 offshore of the bar) and thus weakly dispersand have a low steepness
(kH/2 = 0.017 orH/L=0.0053). The transformation of this incident reguhnd quasi-sinusoidal wave
train into a series of free waves which propagatheir own celerity is clearly visible on Fig. & the
wave profiles are very different from one statian another. After the bar high-order harmonic
components mainly evolve as free waves whereasrtéragined bounded to the main wave component
during the shoaling of wave on the offshore slop¢he bar. The various panels of Fig. 5 show that
almost all the details of the wave profiles areroepced by the simulations indicating that both the
amplitudes and celerities of the released supamdiaics are properly modeled.

Results of case GH(= 4.1 cm ;T = 1.01 s) are presented on Fig. 6. For this cas@tlident waves
are shorterkh = 1.69 offshore of the bar) and thus more dispersind also steepekH/2 = 0.087 or
H/L=0.028). Although the comparison of model’s resulith measurements is not as good as for case
A, it is still of very high quality. The shapes thie waves at the four stations are very well repced
by the model. Only the amplitudes of modeled wavey appear somewhat overestimated at stations
10 and 11, but on can also note the measured veaeesot fully repetitive on the figure. On this eas
the proportion of energy transferred from the n@mponents to super-harmonic components is lower
in comparison to the former case, leading to a rhoraogeneous and regular wave field after the bar.
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Figure 5. Time-series of free surface elevation at the four gauges located after the bar (gauges 8 to 11) for case
C of Dingemans (1994) (H=2.0cm ; T = 2.02 s). Black line: results of the present numerical model ; red dots:

measurements in the wave flume.
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Figure 6. Time-series of free surface elevation at the four gauges located after the bar (gauges 8 to 11) for case
C of Dingemans (1994) (H =4.1cm; T = 1.01 s). Black line: results of the present numerical model ; red dots:
measurements in the wave flume.
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Random waves over a barred beach (Becq-Girard et al. (1999) experiment)

As a final test we consider non-breaking irregulave conditions over a barred bottom profile.
Becqg-Girard et al(1999) performed a series of experiments in a whirae at EDF R&D LNHE in
Chatou (France). The flume is 45 m long and 0.6Wide. It is equipped with a piston-type wave-
maker which can generate either monochromatic wavesregular sea states corresponding to a
specified variance spectrum (e.g. of JONSWAP-tyddle bottom profile (cf. Fig. 7) represents a
submerged bar over which nonlinear effects affeetdynamics of wave propagation in a significant
manner. The bottom profile was made of smooth nettakts and an absorbing sponge layer was set up
in the upper part of the beach so that bottomidmctlissipation and reflection from the beach can b
regarded as negligible in the experiments.

Wave paddle
17 stations -1
1 waves 2 3 56 8 11 14 (m)
= = = T v s T Y T YV Y Y YYYY YV Y VY VvV
b — ~0.5
_______ f i T - T T T 0
25m 0 3 6 9 12 X (m) 15

Figure 7. Lay-out of the set-up for the irregular flume experiments by Becqg-Girard et al. (1999).

For the test-case considered here (test 26) therwapth offshore of the bathymetric profile is.6
m. It decreases down to 0.15 m in the shallowedtgfdhe bar. This case corresponds to non-breakin
conditions. At the beginning of the bottom slopeofe 2 atx = 0) the measured spectral significant
wave height i$1, = 0.034 m and the peak frequency,is 0.4185 Hz (peak perio, = 2.39 s). The
simulated wave spectrum is of JONSWAP-type witrealkpenhancement factpr= 3.3. The measured
spectrum at probe 2 is plotted on Fig. 8.
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Figure 8. Variance spectrum measured at probe 2 for test 26 of Becq-Girard et al. (1999). Note that linear
(logarithmic) scale is used for spectral density (vertical axis) on the upper (lower) plot.
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A series of 16 resistive-type wave probes wereagg along the bathymetric profile (cf. Fig. 7).
Free surface elevation time series were recorded aduration of 40 minutes (corresponding of abou
1000 waves of periody) with a sampling time-step of 0.070 s (correspngdio about 34 points per
wave of periodry).

A computational mesh of length 25 m (covering taege [-5 m; 20 m] on Fig. 7) is constructed
with a mesh size oix = 0.1 m (250 nodes). This corresponds to abouyidits per peak wave length
over the offshore part of the domain. The time ssefit = 0.0657 s, which i§,/35. The numerical
simulation covers approximately the same duratientlee experimental records, namely 2 390 s
(= 40 min) = 1000T, = 35 000At. The time-series of free surface elevation at er@bis issued as
boundary condition to drive the numerical simulafigo that the measured and simulated spectra at
probe 2 are the same (see Fig. 8).
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Figure 9. Evolution of frequency variance spectrum along the bathymetric profile (at probes 3, 5, 7, 9, 11, 13 15
and 16) for test 26 of Becq-Girard et al. (1999). Measured spectra are in red with + symbols; model spectra are
in black with x symbols. Logarithmic scale is used for spectral density (vertical axis).
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From the simulated time-series variance spegéffrare computed by a spectral analysis software
based of the so-called periodogram method, and amdpwith measured spectra computed using the
same technique. The variance spectra at probes73,% 11, 13, 15 and 16 are plotted on Fig. 9. On
this figure the frequencies are normalized by thakpfrequency (so as to let appear in clear way the
super-harmonics components at frequencigs3g, etc.). Note also that a logarithmic scale is used
the spectral density (vertical axis). This sequenfcepectra clearly shows the transfer of energynfr
the main peak to higher harmonics as the watehdigtreases, first towards thig Rarmonic (probes 3
and 5), then towards thé,harmonic (probe 7) and eventually towards tfehdrmonic (probes 9 and
11). The development of these super-harmonics pisaksry well reproduced by the model with the
correct amplitudes for each of these peaks. Asvtiter increases after the shoal (probes 13 andab),
observe that the amplitudes of thig 4nd then 8 harmonics are significantly reduced in very good
agreement with the measured spectra. Eventuaitaibn 16 where the water depth is decreasinghagai
shoaling and nonlinear effects manifest again &ed3, harmonic starts again gaining energy, a trend
also fully given by the model.
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Figure 10. Evolution of integrated spectral wave parameters along the bathymetric profile for test 26 of Becq-
Girard et al. (1999). Upper plot: significant wave height Hyo; middle plot: mean period Tpyei; lower plot: mean
period Tno.. Parameters computed from measured spectra are in red with + symbols; parameters computed
from model spectra are in black with x symbols.
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From the variance spectra a number of characterigtve parameters can be computed. We plot on
Fig. 10 the evolution along the bathymetric profite spectral significant wave height , =4./m, ,

and the mean period§,y; =my/m_and T, =,/my/m, computed from the spectral moments
defined by:

fmaX
”%:J FPE(F)df ®)
fmin

For these three parameters the general trendsobftmn are well simulated by the model but with
a small overestimation both for wave height and mpeeriods. In particular the decrease of the mean
periods as the water depth decreases (i.e. betweehm and 9 m) as a consequence of the transfer of
energy towards super-harmonics is properly modeled,so is the slight increase of these mean period
after the shoal where the water depth is greater.
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Figure 11. Evolution of nonlinear wave parameters along the bathymetric profile for test 26 of Becq-Girard et
al. (1999). Upper plot: skewness (horizontal asymmetry) As; lower plot: vertical asymmetry A. Parameters
computed from measured bi-spectra are in red with + symbols; parameters computed from model bi-spectra
are in black with x symbols.

Finally, in order to characterize the nonlineareefs, we compute and plot on Fig. 11 two
parameters, namely the skewnkgand the vertical asymmetdy respectively defined by:

<(n —<n>)3> mZ_:m anRéBm,n]
Ag= mg/z = ;ng,/z )
> S im[By,]
A== = )

my
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whereB,, = B(f, f,) is the bispectrum, defined as the Fourier tramsfof the third-order correlation
function of the surface elevation. The bispectrian be used to identify coupled modes in the wave
train (seee.g. Kim and Powers 1979; Kim et al. 1980; Elgar ana&1985; Becg-Girard et al. 1999).

The skewnesa; is a measure of the horizontal asymmetry of theesaAs the wave shoals on the
bottom profile (i.e. foxx = 0 to 9 m) we can clearly see an increase ofghirameter, from almost 0 to
about 1.5 for the measurements and 1.3 for the mdtien the skewness decreases betweerf.5
and 12.5 m when the water depth increases aftestthal, and eventually it increases at probe 16 as
water depth is decreasing again. These trends elteraproduced by the model although the model’s
values are in general a bit lower than the measoined.

The vertical asymmetni of the wave signal can be obtained by integratitegimaginary part of
the bispectrum (Masudo and Kuo 1981). The lowerepah Fig. 11 shows that the evolution of the
vertical asymmetry is modeled with great accur&gsst it decreases from = 0 to —0.6 foix ranging
from O to about 7 m, then it increases up to aldobH0.6 forx ranging from 7 m to about 11 m, then it
decreases again as the waves shoal on the last@idipe profile.

SUMMARY OF THE STUDY AND OUTLOOK

The new model recently proposed by Chazel .g28l09) exhibits a number of advantages. Firstly,
a property shared by other Boussinesqg-type modelgecall that it is a 2DH model, making it clearly
less heavy to use than a full 3D hydrodynamical eho&econdly, due to the use of a potential
formulation the model involves only 4 equationsstadve, both for 1DH and 2DH cases. Thirdly, only
first and second order space derivatives appeamaddel equations, which greatly simplifies the
numerical implementation compared to other higheoBloussinesqg-type models that involve up to fifth
order derivatives. Fourthly, we have proposed #eaf a static Dirichlet-to-Neumann operator (DNO),
which has to be computed once for all at the beg@gof the simulation, saving thus a large amount o
CPU time.

Analysis of model’s properties has revealed thaibgsesses excellent linear characteristics, up to
kh =10 at least, for dispersion, shoaling coeffitiand vertical profile of velocity. The three 1Dékbt-
cases considered in this study have shown very gapébilities of the model to reproduce exact
numerical solutions and experimental measuremans\ariety of non-breaking wave conditions and
types of bottom profiles. Nonlinearity, dispersiand bathymetric effects are well reproduced by the
model, which appears to possess a rather wide doafaralidity while having a reasonable level of
complexity.

Ongoing and future work will address a number opriavements of this model, namely its
extension to deal with 2DH cases (with the aim sihg unstructured meshes for the coastal domain of
interest), the modeling of dissipative processesn@ly bottom friction dissipation and depth-induced
breaking), the appropriate numerical representatifovarious types of coastal/harbor structureshin t
model, and the modeling of run-up and run-down a¥&on slopes.

REFERENCES

Agnon, Y., P.A. Madsen, and H.A. Schaffer. 199%ew approach to high-order Boussinesq models.
Journal of Fluid Mechanics, 399, 319-333.

Becqg-Girard, F., P. Forget, and M. Benoit. 1999nNoear propagation of unidirectional wave fields
over varying topographyCoastal Engineering, 38, 91-113.

Benoit, M., M. Luck, C. Chevalier, and M. Bélorge3002. Near-bottom kinematics of shoaling and
breaking waves: experimental investigation and migak prediction. Proceedings of 28"
International Conference on Coastal Engineering (Cardiff, UK), 306—318. ed. J. McKee Smith,
World Scientific.

Bingham, H.B., and Y. Agnon. 2005. A Fourier—-Boussiq method for nonlinear water waves.
European Journal of Mechanics. B/Fluids, 24, 255-274.

Chazel, F., M. Benoit, A. Ern, and S. Piperno. 208%ouble-layer Boussinesq-type model for highly
nonlinear and dispersive wavésoceedings of the Royal Society of London, A 465, 2319-2346.

Dean, R.G. 1965. Stream function representationasflinear ocean wavesournal of Geophysical
Research, 70, 4561-4572.

Dingemans, M. 1994. Comparison of computations vBibussinesq-like models and laboratory
measurementdlast-G8M technical report H1684. Delft Hydraulics, Delft, The Netherlands.



12 COASTAL ENGINEERING 2010

Elgar, S., and R.T. Guza. 1985. Observations gfduisa of shoaling surface gravity wavéaurnal of
Fluid Mechanics, 161, 425-448.

Gobbi, M.F., J.T. Kirby, and G. Wei. 2000. A fullpnlinear Boussinesq model for surface waves. Part
2. Extension to O((k#). Journal of Fluid Mechanics, 405, 181-210.

Kim, Y.C., and E.J. Powers. 1979. Digital bispectmaalysis and its application to the non-lineavaa
interactionsl EEE Transactions on Plasma cience, 7(2), 120-131.

Kim, Y.C., J.M. Beall, E.J. Powers, and R.W. Miks&880. Bispectrum and nonlinear wave coupling.
Physics of Fluids, 23(2), 258—-263.

Lynett, P., and P.L.F. Liu. 2004. A two-layer apgeb to wave modeling?roceedings of the Royal
Society of London, A 460, 2637—-2669.

Madsen, P.A., H.B. Bingham, and H. Liu. 2002. A nBaussinesq method for fully nonlinear waves
from shallow to deep watelournal of Fluid Mechanics, 462, 1-30.

Madsen, P.A., H.B. Bingham, and H.A. Schéaffer. 20@®ussinesqg-type formulations for fully
nonlinear and extremely dispersive water wavedvdgon and analysi€roceedings of the Royal
Society of London, Series A, 459, 1075-1104.

Masudo, A., and Y.Y. Kuo. 1981. A note on the inmagy part of bispectrddeep Sea Research, 28A,
(3), 213-222

Nwogu, 0.G. 1993. An alternative form of the Boussiq equations for nearshore wave propagation.
Journal of Waterway, Port, Coastal and Ocean Engineering, 119(6), 618—638.

Peregrine, D.H. 1967. Long waves on a bedetx.nal of Fluid Mechanics, 27, 815-827.

Rienecker, M.M., and J.D. Fenton. 1981 A Fourigpragimation for steady water wavekurnal of
Fluid Mechanics, 104, 119-137.

Wei, G., J.T. Kirby, S.T. Grilli, and R. Subramanyi295. A fully nonlinear Boussinesq model for
surface waves: Part I. Highly nonlinear unsteadyegalournal of Fluid Mechanics, 294, 71-92.
Zakharov, V. E. 1968. Stability of periodic waveisfinite amplitude on the surface of a deep fluid.

Journal of Applied Mechanics and Technical Physics, 9, 190-194.



