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APPLYING BIVARIATE HHT TO HORIZONTAL VELOCITIES  
OF MULTI-DIRECTIONAL WAVES 

Theo G. R. Moura 1, Claudio F. Neves2 and José Claudio F. Telles 3 

The Hilbert-Huang Transform (HHT) is extended to the time series analysis of wave orbital velocities resulting from 

the superposition of waves propagating in different directions. On a theoretical basis, it is shown that an apparently 

chaotic velocity signal may result from the interaction of three or more waves, each one with its own period and 

direction of propagation. Such result is compatible with records of PUV instruments. The comparison between 

bivariate HHT with Fourier directional analysis shows several advantages of the former, such as identification of 

wave groups and non-linear interaction components. 
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INTRODUCTION 

Coastal engineers deal with several types of directional field data (e.g. wind and current velocities, 
orbital wave velocities and accelerations, surface slopes), which always present a common complex 

pattern as a result of nonlinear interactions among components. In order to understand, describe and 

predict several coastal processes, a directional description of the wave field must be made. The 

directional spectrum is thus constructed on basis of three statistically independent variables. 

Wave measurements using PUV gauges often show a complex pattern for the free surface and flow 

velocity. Figure 1 shows a plot of a 100s burst of horizontal velocities recorded off the coast of Rio 

Grande do Norte, Brazil. Similar patterns, however, may be obtained as a result of synthetic nonlinear 

superposition of three wave trains. 

 
Figure 1: Horizontal velocities recorded by PUV off the coast of Rio Grande do Norte, Brazil, at 10 m water 
depth. 

THEORETICAL BACKGROUND 

Wave-wave interaction has been object of investigation for many years since the pioneering work 

by Phillips on resonant triads. Most attention has been focused on the shape of the free surface, while 

few works have dealt with the velocity field associated to the high and low frequency components 

resulting from non-linear interactions. 

Phillips (1960) has identified the possibility of resonant interaction of wave triads at third order. 

However, even at second order, waves propagating from different directions may induce the formation 
of forced wave trains, with frequencies which are equal to the sum of or the difference between the 

individual frequencies of the original waves (Sharma and Dean, 1979). Looking at the velocity 

potentials of these second order interacting trains, it can be shown that the vertical decay of the 

difference terms is very slow, even though the magnitude of these terms may be eventually small. 

Therefore, it is possible that a bottom mounted velocity gauge may record a signal, which would be 

wrongly attributed to a free wave. The same reasoning applies to pressure records, when a linear 
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response transfer function is used to convert bottom pressure into free surface elevation. In this case, 

the presence of forced wave groups may be disguised. 

Thus, it would be desirable to develop methods of analysis of wave records (velocity, acceleration, 

pressure, free surface elevation) which could separate a complex wave field into few components. This 
is of particular interest at deep water or within the wave generation zone, but it is also of great interest 

at shallower water, when very often one attempts to correlate the data with that obtained at off-shore 

buoys. 

Longuet-Higgins (1963) obtained the Energy Directional Spread Function using a Fourier 

expansion in order to compute the auto and cross spectra of three stochastic series, pressure and two 

velocity components. As a result, one obtains the mean principal direction, the directional spread 

function, peak period and significant wave height. The shortcoming of Fourier spectral analysis for the 

example shown in Figure 1 becomes evident, and for this reason different techniques should be 

attempted.  

First proposed by Huang et al. (1998), the Hilbert-Huang Transform (HHT) is an adaptative 

method of time series analysis, which can be applied to nonlinear and non-stationary processes. It 

consists on an empirical decomposition in oscillatory modes (EMD), denominated Intrinsic Mode 
Functions (IMF), followed by the Hilbert transform of these functions. The Hilbert spectrum thus 

obtained allows determining the instantaneous frequency and amplitude of the signal, offering 

advantages in comparison to the usual Fourier spectral analysis and wavelet transform (Huang and Wu, 

2008). 

The HHT was originally developed for scalar time series. Later, the basic ideas – i.e., decomposing 

the signal into Intrinsic Mode Functions, to which the Hilbert Transform is applied – were extended to 

vector data time series. However, some changes need to be introduced, since concepts like maximum or 

minimum of vector quantities no longer apply. 

Regarding acoustic wave gauges data, three features must be noted. First, the choice of axes 

orientation should not influence the final results; second, because observations show that wind, current 

or wave velocities rotate in time, such direction of rotation should be retained as an important piece of 
information; third, the apparent chaotic behavior of the data is intrinsically linked to the history of 

superposition and type of interaction among various individual waves, each with its own frequency, 

amplitude and direction of propagation. Further details may be found in Moura (2010). 

The Hilbert-Huang Transform 

The Hilbert-Huang Transform (HHT) is an adaptative method to analyze time series of non-linear, 

non-stationary data, based on two steps. The first one, the sifting, is an interactive process with the 

purpose of identifying Intrinsic Mode Functions (IMF), with characteristic frequencies (equation 1). 

The second one is the Hilbert Transform of each IMF, allowing to identify the instantaneous frequency 

 (equations 2 and 3). For a detailed description, the reader is referred to Huang et al. (1998, 2008).  
 

Sifting 
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Analytic signal, instantaneous amplitude and instantaneous frequency 
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The instantaneous frequency is then computed as the time derivative of the phase function θ(t) and 
the Hilbert spectrum is constructed representing, at each instant of time (horizontal axis), the frequency 

(vertical axis) and the amplitude a(t), represented by a color scheme where red means higher values 

and blue, lower values. 
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The Hilbert-Huang Transform for vectorial data 

Different attempts have been made in order to extend the concept of HHT to the analysis of time 

series of vector data, such as velocity records. Indeed, the sifting process as originally proposed by 

Huang et al. (), cannot be simply extended to bi-dimensional data, since it is neither possible to 

determine maximum or minimum values, nor to define an Intrinsic Mode Function based on extreme 

points or zero-crossings. 

Three methodologies have been found in the literature that had been developed to treat two 
dimensional data: 

 the Complex Empirical Mode Decomposition (CEMD) (Tanaka & Mandic, 2006)  

 the Bivariate Empirical Mode Decomposition (BiEMD) (Riling & Flandrin, 2007)  

 the Vectorial Hilbert Huang Transform (VHHT) (Yunchao, Enfang & Zhengyan, 2008)  

The CEMD method is based on a decomposition of the signal in positive and negative frequencies, 

following the methodology of rotational spectral analysis developed by Gonella (1972) to identify 

inertial frequencies in ocean currents. Suppose the 2D signal may be decomposed as: 
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The complex signal may be expressed as: 
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where the coefficients u+ and u- are related to the coefficients in equation (4) by the following 
expressions: 
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Each of these components is then submitted to the 1D HHT (the traditional method described in 
the first session). 

The BiEMD chooses N different planes, decomposes the 2D vector signal on each of these planes 

(U and V), applies the traditional 1D HHT to each component separately, and determines an envelope 

for each pair of orthogonal planes, thus building a 3D envelope as sketched on Figure 2.  

The VHHT selects three series (pressure and 2 orthogonal velocity components) and applies the 

1D HHT to the pressure signal and the BiEMD to the velocity signal. The angle of incidence  is 
obtained by using equations (7) and (8), 
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where H[] denotes the Hilbert Transform, and H* denotes the complex conjugate. Yunchao et al. 

(2008) used two synthetic series of waves propagating in different directions, and this method was able 

to produce correct answers. However, when the same method was tested for more complex sea states, it 

was not always possible to isolate the individual components of the wave train. 
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(B) 

 
 

Figure 2: BiEMD: (A) Decomposition of vector and (B) construction of a 3D envelope for a two-dimensional 
signal, composed by a high frequency (B-c) and low frequency (B-d) contributions. The quantity plotted on 
the vertical plane, perpendicular to the time axis, might be any two-dimensional vector. 

TESTS AND RESULTS 

Moura (2010) applied the 1D-HHT and the Bivariate HHT (BiEMD) to the analysis of synthetic 

records of wave free surface elevation and velocities in order to characterize its ability to perform the 

following tasks: (1) separating primary wave trains; (2) identifying nonlinear interactions; (3) 
identifying non-stationary processes; (4) characterizing wave groups; (5) finding the directions of 

group propagation. Twelve sets of wave conditions were numerically generated, including non-linear 

terms up to second order, simulating:  

 one single non-linear (Stokes) wave train with constant frequency;  

 one single linear wave train with slowly or abrupt varying frequency; and  

 groups of 2, 3 and 6 waves, each with a different direction of propagation and with slight (or 

marked) differences in frequency.  

When HHT is applied to the free surface elevation of a nonlinear Stokes wave, the Hilbert 

spectrum shows a pattern of fluctuating frequency along time, as presented in Figure 3, which shows 

the wave profile, with sharp crests and flat troughs, the Fourier spectrum, and the Hilbert spectrum. In 

this example, the wave has amplitude of 1.5 m, period of 7 s, and the water depth is 10 m. The 
amplitude variation of each IMF is represented by the color of the line (red), which remains the same 

because of the wave amplitude remains constant. 

In contrast, when HHT is applied to the free surface record of a non-stationary wave, the resulting 

Hilbert spectrum reveals the imposed frequency changes, as shown in Figure 4. It is evident the 

advantage of the HHT analysis when compared to the ordinary Fourier spectral analysis. For instance, 

taking the example of the wave record shown in Figure 4, if the order of occurrence of the two wave 

conditions had been changed, the Fourier spectrum would remain the same, since this is a global 

method of analysis, whereas HHT would result in different pattern of the Hilbert spectrum because it is 

a local analysis (instantaneous frequency). 

The simultaneous occurrence of various wave trains, each with its own frequency, amplitude and 

direction of propagation, may result on a very complex sea state. Table 1 presents an example of three 
wave trains with close frequencies but propagating at very wide directions. The resulting free surface is 

shown in Figure 5 , where (A) shows the linear superposition of the three waves. The complexity in the 

surface displacement is due to different wave directions. As the second order components are added, 

the surface behavior is modified becoming even more complex, with the presence of long and short 

forced waves with smaller amplitudes. In Figure 5, part (C) shows the subtractive terms of the wave-

wave interaction between waves A1 and A2 ( and part (D) shows the addictive wave-wave 
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interaction between waves A1 and A2 (The next step should be to investigate the velocity 
contribution associated with these terms.  

 

 

 

 

 
Figure 3: Second-order Stokes wave. (A) Surface displacement. (B) Fourier spectrum. (C) Hilbert spectrum.  

 
 

 

 

 

 

 
 
Figure 4: (A) Synthetic wave record with time varying frequency; (B) Hilbert spectrum (HHT) showing 

frequency change; and (C) Fourier spectrum of the same record. 
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Table 1: Three-wave second order interaction. 

wave amplitude (m) period (s) angle  (°) length (m) 

A1 1.0 9.0 80 95.6 

A2 1.2 10.0 0 100.0 

A3 1.5 10.2 20 111.7 

interaction phase period (s) angle (°) length (m) 

A1-A2  90.0 125.5 79 

A1-A3  76.5 132.3 102 

A2-A3  510.0 -76.1 318 

A1+A2  4.74 43.2 66 

A1+A3  4.78 52.5 59 

A2+A3  5.05 9.9 56 

 

 

 
Figure 5: (A) Superposition of the three first order waves. (B) Superpositon of the three waves including first 

e second order components. (C) Second order component, subtractive wave-wave interaction ((D) 

Second order component, additive wave-wave interaction ( 

 

This example can help elucidate some features of the HHT that will help to better understand this 

method of analysis. First, HHT is able to separate different wave trains or to identify a sum of primary 

waves. As pointed out by Flandrin et al. (2004), the EMD works as a filter bank, allowing the 

identification of non-stationary processes such as wave groups. However, the method cannot separate 

waves in distinct IMFs when the primary frequencies are too close to each other. 

Figure 6 shows the Hilbert spectrum for the IMF that represents the wave groups formed by the 
three waves. Because of the relative close frequency between waves, they turn out to be represented by 

one intrinsic mode function. The behavior of the signal amplitude and frequency shows the presence of 

wave groups with different length, suggesting that these groups are composed by more than two waves. 

Nevertheless, since wave groups are non-stationary processes, it would be very difficult to identify 

them by means of the Fourier spectral analysis. As shown in Figure 7. despite the capability of the 

method to find the frequencies of the primary waves, no inference can be made about wave groups, 

which clearly poses a limitation of the usual Fourier method to wind wave analysis. 
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Figure 6: (A) Surface displacement. (B) Hilbert spectrum for the IMF that represent the wave groups. Blue line 
- frequency, Green line - amplitude. 

 

 

 
Figure 7: Fourier spectrum of the wave record shown in Figure 6 (above). 

 

 

Another situation which was investigated was that of waves with larger frequency difference, as 

shown in Table 2. In that case the EMD is capable to identify the three primary waves trains as shown 

in Figure 8. Moura (2010) discusses in more detail the importance of difference between frequency 

rather than wave direction to define the IMF behavior. 

 

 

 

Table 2: Primary wave with close directions and large frequency difference 

wave amplitude (m) period (s) angle (º) 

A1 1.0 5 45 

A2 1.5 8 60 

A3 1.2 15 50 
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Figure 8: Three wave interaction for example given in Table 2: (A) Surface elevation. (B) Hilbert spectrum. 

 

As presented early in this article, an important feature of water waves in real seas is the nonlinear 

components which are formed by wave-wave interactions, such as long period small amplitude forced 

waves. The HHT can be a good method to analyze this kind of oscillations. Figure 9 presents the 

subtractive wave-wave interaction component between A2 and A3 and the IMF with similar frequency, 
which shows the capability of the method to identify such small amplitude oscillations. 

 

 
Figure 9: Comparison between (red line) subtractive wave-wave interaction (A1 and A2) and (blue line) IMF 
with similar frequency. 

 

Several instruments nowadays measure horizontal velocities (U and V components), which require 

appropriate analysis of direction and frequency. Many reasons make the method of analysis of bi-

dimensional more complex than the ones which are usually applied to surface elevation or pressure 
records (scalar data). For a long crested progressive wave, the horizontal components of the orbital 

velocity are in phase with each other, as well as with the surface elevation, i.e. U and V have maxima 

and minima at the same time. In this situation, the wave direction can be easily found. The 

superposition of waves propagating in different directions significantly changes the pattern of bi-

dimensional horizontal velocities, and the components U and V are no longer in phase. When non-

linear effects are considered, not only the multiple directions but also the difference between 

frequencies also play an important role. Figure 10-A shows the velocities U e V (hodograph) 

concerning only the first order of waves (A2) and (A3). Because of the small frequency difference, 

wave groups are formed; however, due to the difference in wave directions, an elliptical pattern of 

velocity develops, where the axis and origin changes with time, as well as the direction of rotation of 

the velocity vector. On the other hand when there is a presence of two waves (A1 and A2) with a higher 
difference in frequency, the velocities U e V change drastically (Figure 10-C). 
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In a real sea condition, there is often a combination of different waves coming from distinct 

directions; in addition, the presence of tides and superficial wind currents makes the interpretation of 

the horizontal velocities extremely difficult (Figure 1).Considering only those three waves indicated in 

Table 2, when their second order nonlinear components are included, it becomes evident how difficult 
it is to interpret the data (Figure 11). 

 

 
Figure 10: Velocities U and V for two different wave superposition. (A)-(B) superposition of  waves A2 and 

A3. (C)-(D) superposition of waves A1 and A2. 

 

 
Figure 11: U and V components of horizontal velocity resulting from the superposition of waves in different 

directions and with different periods. 
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As pointed out before, both for the 1D-EMD and for the BiEMD, frequency differences determine 

whether the IMF will present a wave group or a single wave train. Comparing the two examples given 

in Tables 1 and 2, it can be seen that the results for BiEMD follow the same pattern as the 1D-EMD. In 

the first case, the BiEMD identified groups of waves for one IMF, as shown by the Hilbert spectrum for 
U e V (Figure 12). The IMFs for U have higher amplitudes than the IMFs for V, because the amplitude 

modulations due to the intersecting waves from various directions are much stronger on U velocities. 

The example of Table 2 shows that, when the primary wave trains are well separated in frequency 

(Figure 13), it is easier to identify each wave direction (Figure 14). 

 

 
Figure 12: Hilbert spectrum. (A) velocity U, (B) velocity V. 

 

 
Figure 13: Hilbert spectrum. (A) velocity U, (B) velocity V. 

 
Figure 14: IMFs components representing velocities U and V of three primary wave trains (Table 2). (A) wave 
A1, (B) wave A2, (C) wave A3. 

 
The low frequency components patterns on the velocity record can be well identified by the 

BiEMD. Similarly to the 1D-EMD, the respective frequency components (Figure 15) were properly 

sifted, although same trouble with amplitude super estimation and out of phase IMF still appear. In the 

future, one of the main goals of the method, though, would be to identify the direction patterns of those 

components. 
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Figure 15: Velocities U and V for low frequency wave components and respective complex IMF. Black line - 
velocity U, dot red line- real part of IMF, green line - velocity V, dash cyan line - imaginary part of IMF. 

 

 

CONCLUSION 

HHT is an adaptative method, well suited to the analysis of non-stationary, non-linear processes, 

which does not suppose a priori any property of (i.e. amplitude, frequency) nor impose to (i.e. 

eigenfunction components) the original series. The method consists of two steps: a sifting process, 

where Intrinsic Mode Functions (IMF) are identified, followed by the Hilbert Transform of the IMFs. 

HHT identifies the instantaneous frequency and amplitude of the signal, a significant advantage when 

compared to other methodologies, such as Fourier analysis, which furnish the global instead of the 

instantaneous properties of the signal. By means of the Hilbert spectrum, it is possible to identify wave 

groups, non-linear components and other transient effects. 

Three different methodologies for two dimensional data series were tested, in order to investigate 

the complex pattern of horizontal orbital velocities when two or more primary waves are present. 

Among these methods, the BiEMD turned out to be an efficient procedure for separating nonlinear 
components in the wave train. 

The current methods of analysis of PUV data are based on linear theory transfer functions and are 

valid for single wave trains traveling in only one direction. Such methods do not consider, for instance, 

neither the formation of wave groups due to multiple direction wave-wave interaction, nor the Doppler 

effect of currents on waves. The new methods, such as HHT and wavelets, attempt to correct the 

weakness of linear Fourier analyses, but they have not yet reached a “stable” stage which should allow 

to determining the full complexity of sea states. It seems promising, though, that two dimensional HHT 

methods may be further developed in order to characterize nonlinear wave-wave interaction. 

Experiments with synthetic series of horizontal velocities indicated that eventually some IMFs 

were formed by abnormal oscillations, which were not present in the original series, nor corresponded 

to higher order wave-wave interactions. Likely problems of the sifting process for 2D signals may be 
related to the interpolation method and to the convergence or stopping criterion. Studies are currently 

being conducted at the National Laboratory of Civil Engineering (LNEC) and at the Federal University 

of Rio de Janeiro in order to analyze orbital velocities measured by ADVs, both in wave flumes and in 

the field. 

The paper then addresses the need to establish alternative parameters based on HHT, which may 

have physical and practical significance as well, such as wave groupiness, structural resonance due to 

low frequency wave-wave interaction, characterization of sediment transport due to complex bottom 

wave velocity. 
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