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QUANTIFICATION OF TIDAL WATERTABLE OVERHEIGHT DUE TO THE SLOPING 
BEACH IN UNCONFINED AQUIFERS 

Zhiyao Song1   Zhuo Zhang2 and Ling Li3 

Based on a liberalized one-dimensional Boussinesq model and the previous study results, this paper provides two 
experience solutions to quantify the tidal groundwater overheight behind arbitrary sloping beaches. One solution is 
obtained with an asymptotic matching method advanced by Guo, and the other solution is origined by the analytical 
solution as perturbation parameter less than unity, the errors of both solutions compared with numerical solution are 
small and acceptive for the application. 
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INTRODUCTION 
Generally, tidal watertable overheight or super-elevation is defined as the difference between the 

time-averaged watertable and the mean sea level (MSL) for far inland in the absence of regional 
groundwater flow. As one of the principal features of the groundwater response to tidal forcing in a 
coastal unconfined aquifer, which is found both in field observations and indoor experiments and 
demonstrated through theoretical researches, it is an important parameter related to a thorough 
understanding of the interaction between tides and the groundwater flow, such as the formation of 
groundwater circulation, the intrusion of saltwater, the erosion or aggregation of beachface, the 
estimation of submarine groundwater discharge (SGD) and associated chemical input to the coastal 
ocean, specially for the very flat beaches (e.g., Phillip, 1973; Parlange et al., 1984; Nielsen, 1990; 
Church, 1996; Moor, 1996; Li et al., 2000; Song et al., 2006; Roberts,2008). 

The generation of tidal watertable overheight is attributed to the formation of seepage face on the 
beachface, a moving boundary condition due to the beach slope and the non-linearity of tide-induced 
groundwater wave propagation (e.g., Phillip, 1973; Parlange et al., 1984; Nielsen, 1990; Li et al., 2000; 
Song et al., 2006). Because the seepage face formation is not well undersood and the nonlinear effects 
on tidal propagation in the aquifer with the vertical beach is demonstrated by perturbation solutions 
(e.g., Parlange et al., 1984; Song et al., 2007), we focus on the quantification of the tidal watertable 
overheight due to the sloping beach in this paper. 

Based on a linearised one-dimensional Boussinesq model and the previous study results, this paper 
provides two experiense solutions to quantify the tidal groundwater overheight behind arbitrary 
sloping beaches. 
 

BRIEF REVIEW OF PREVIOUS STUDIES  
We consider one-dimensional shallow groundwater flow in an unconfined coastal aquifer with a 

horizontal impermeable base to be homogeneous, isothermal and incompressible, and consider only 
small amplitude tides compared with the aquifer thickness, which is a valid assumption in most cases. 
This flow is often modelled by a linearised Boussinesq equation (e.g., Bear, 1972; Nielsen, 1990; Li et 
al., 2000; Song et al. 2006) 
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where x  [L] is the horizontal inland coordinate normal to coastline; t [T] is time; ),( txh [L] is 
the watertable height from the MSL（Fig.1）; D is the mean aquifer thickness, K is the saturated 
hydraulic conductivity, and en  is the effective porosity (all assumed to be constants). 
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Figure 1. Schematic diagram of tidal watertable fluctuations in a coastal aquifer (HT, MT and LT denote the 
high, mid and low tidal level ) 

 

If the seepage face and regional groundwater head gradient (flow) are negligible, the moving 
boundary condition is given by 

[ ] )cos()(),(0 tAtttxh ωη ==  and  )()cot()(0 ttx ηϕ=            (2) 

 where )(0 tx  is the x-coordinate of the moving boundary; ϕ is the slope of the beach; 

)(tη represents tidal oscillations of the MSL; A is the tidal amplitude; and ω is the tidal frequency.  

By introducing the new variable )(0 txxz −= , Eqs. (1) and (2) can, respectively, be 
transformed to (Li et al., 2000) 
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)cos(),0( tAth ω=                                                                        (4) 
Thus, the moving boundary problem of Eq. (1) is mapped to a fixed boundary problem.   
Far inland ( ∞→z ), we consider only the tidal effects, the gradient of h  is taken to be zero (the 

tidal effects are diminished), i.e., 
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For the purpose of simplicity and generality, the following non-dimensional variables are 
introduced: 

              Lzx /* = , Ahh /* =  and tt ω=*                                           (6) 

where 
ωen

KDL =  represents a decay length scale of watertable fluctuations.  

Substituting (6) to (3) gives 
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and the corresponding boundary conditions as follows 
)cos(),0( *** tth =                                                                      (8) 
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participating dimensional parameters, which is used by Nielsen (1990) and Teo et al. (2003) in their 
analytical solution investigation. 

For 1<ε , using the perturbation method with Li et al.(2000) the sixth order dimensionless 

overheight solution )(* ε∞h can be determined 
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For 3<ε , Song et al. (2006) presents a new analytical approach to solving above Boussinesq 
equation with the Fourier-series expansion, and values of the dimensionless overheight are given. 

For ∞→ε , employing a modified Crank-Nicholson predictor-corrector method for the 
advection-diffusion equation (Ames, 1977; Parlange et al. 1984), the numerical solution of (7) with the 
boundary condition (8) and (9) can be obtained easily. The results show the dimensionless overheight 
equals the unit asε  approaches infinity. Based on the Fourier-series expansion, this numerical result is 
proved further by Song et al.(2006) in theory. 

As abovemention, previous studies of moving-boundary effects on watertable overheight don’t 
give a mathematical function for ∞≤≤ ε0 , so these results is hard to be applied in the practice.  

EXPERIENCE SOLUTION 
From the results of previous studies, we can find two asymptotes as follows 
(1)Analyzing the solution (10), the dimensionless overheight solution )(ε∞h can be expanded as 

an alternative series about ε , and  εε
2
1)(* =∞h  as 0→ε . 

(2)Through numerical solution and mathematical proof, the expanded series of  )(ε∞h should be 

converged, and  1)(* →∞ εh as ∞→ε . 
Using the logarithmic matching, an asymptotic matching method advanced by Guo (2003), one 

can show that the dimensionless overheight solution )(* ε∞h  is 
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in which  20 =ε is determined by the asymptote (2), and  4/5=β is solved from (11) at 10=ε   

where the corresponding numerical value is 90.0)10(* =∞h . 

    The other solution is pure experience. Assuming   )(* ε∞h as   

               )(tan)( 1* εε bah −
∞ =                                                                (12) 

we have  
2
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=ab with asymptote (1) and 1
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 with asymptote (2), that is, 
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Expanding solution (12) into a power series of ε  within [0,1], we find surprising its coefficients 

are very close to those of solution (10) up to the sixth order. 
The experience solutions (11) and (12) are compared in Fig.2 with numerical solution. This 

comparison show the solution (11) is better slightly than the solution (12) fitted to numerical solution, 

but both errors are acceptive for the application.    
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 Fig.2 Comparison of experience solutions and numerical solution 

Conclusion  
In order to determine the inland overheight )(εℵh ,we have given two experience solutions (11) 

and (12) by numerical computing for 1000 <≤ ε  using (7) with the corresponding condition (8) and 
(9). One is obtained with an asymptotic matching method, the other is origined by the analytical 
solution (10) for 10 <≤ ε , the errors of both solutions are small and acceptive for the practice.  
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