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DEPTH-INTEGRATED NUMERICAL MODELING OF TURBULENT TRANSPORT BY 
LONG WAVES AND CURRENTS 

Dae-Hong Kim1 and Patrick Lynett2

In nature, flows are 3D phenomenon, but, in many geophysical settings, the water depth scale is smaller relative to the 
horizontal scale, such that horizontal 2D (H2D) motions dominate the flow structure. In those cases, especially in 
large domains, the H2D numerical model can be a practical and accurate tool - if the 3D physical properties can be 
included properly into the H2D model. Some of the H2D approaches in widespread use are the Boussinesq-type 
equations (BE) and shallow water equations (SWE) derived by a perturbation approach or depth averaging. The BE 
can account for some of the dispersive, turbulent and rotational flow properties frequently observed in nature (Kim et 
al., 2009). Also it has the ability of coupling currents and waves and can predict nonlinear water wave propagation 
over an uneven bottom from deep (or intermediate) water to the shallow water area. However, during the derivation of 
a H2D equation set, BE or SWE, some of the 3D flow properties like the dispersive stresses (Kuipers and 
Vreugdenhill, 1973) and the effects of the unresolved small scale 3D turbulence are excluded. Subsequently, there 
must be some limitations for predicting horizontal flow structures which can be generated through these neglected 3D 
effects. Naturally, any inaccuracy of the hydrodynamic flow model is reflected in the results of a coupled scalar 
transport model. In order to incorporate 3D turbulence effects into H2D flow models, various approaches have been 
proposed. Among many others, the stochastic backscatter model (BSM) proposed by Hinterberger et al. (2007) can 
account for the mechanism of inverse energy transfer from unresolved 3D turbulence to resolved 2D flow motions. 
Reasonable results were obtained by the proposed methods. Similar to the flow model, for scalar transport it is desired 
to develop a H2D model that can approximately account for the vertical deviations of concentration and velocity, and 
the associated mixing. For the accurate prediction of transport, an accurate numerical solver which can minimize 
numerical dispersion, dissipation and diffusion should be developed. Recently, the finite volume method (FVM) using 
approximate Riemann solvers has been developed and applied successfully. In this study, a depth-integrated model 
including subgrid scale mixing effects for turbulent transport by long waves and currents is presented. A fully-
nonlinear, depth-integrated set of equations for weakly dispersive and rotational flow are derived by the long wave 
perturbation approach. The same approach is applied to derive a depth-integrated scalar transport model. The 
proposed equations are solved by a fourth-order accurate FVM. The depth-integrated flow and transport models are 
applied to typical problems which have different mixing mechanisms. Several important conclusions are obtained 
from the simulations: (i) From a mixing layer simulation it is revealed that the dispersive stress implemented with a 
stochastic BSM plays an important role for energy transfer. (ii) The proposed transport model coupled with the depth-
integrated flow model can predict the passive scalar transport based on the turbulent intensity - not by relying on 
empirical constants. (iii) For near field transport simulations, the inherent limitation of the two-dimensional horizontal 
model to capture vertical structure is recognized. (iv) If the main mechanism of flow instability originates from 
relatively large-scale bottom topography features, then the effects of the dispersive stresses are less important. 
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INTRODUCTION  
In nature, flows are 3D phenomenon. However, in many cases of the geophysical flows, the water 

depth is limited relative to the horizontal scale so that the horizontal 2D motions dominate the flow 
structures. In those cases, especially in large domains, the horizontal 2D numerical model can be a 
practical and accurate tool if the 3D physical properties can be reflected properly into the 2D model. 
One of the 2D approaches mostly wide spread are the Boussinesq equations and shallow water 
equations with the long wave scaling derived by perturbation approach or depth averaging.  

 
The Boussinesq equations model can account the dispersive, turbulent and rotational flow 

properties frequently observed in nature (Kim et al., 2009). Also it has the ability of coupling the 
currents and waves (Yoon and Liu, 1989) and can predict the nonlinear wave propagations over uneven 
bottom from deep (or intermediate) water area to shallow water area (Nwogu, 1993 and Wei et al. 
1995). 

 
However, during the derivations of a 2D horizontal equation set, some 3D flow features such as the 

dispersive stresses (Kuipers and Vreugdenhill, 1973) and the effects of the unresolved small scale 3D 
turbulence are excluded. Consequently, there must be some limitations for predicting the horizontal 
flow structures which can be originated by the neglected 3D effects. Naturally, the inaccuracy of the 
flow model is reflected in the results of a transport model. 
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In order to incorporate the 3D turbulence effects into 2D horizontal flow models, various 
approaches were proposed. For example, Nadaoka and Yagi (1998) incorporated a subdepth scale 
turbulence model based on an eddy viscosity into the shallow water equations. A stochastic BSM 
proposed by Hinterberger et al. (2007) can account the mechanism of the inverse energy transfer from 
the unresolved 3D turbulence to the resolved 2D flow motions. Reasonable results were obtained by the 
proposed methods.  

 
Similar to the flow model, it is required to develop a 2D horizontal scalar transport model that can 

account the vertical deviations of the concentration and velocity. Taylor (1953) firstly proposed a 
brilliant method how to reflect the effects of the vertical nonuniformity into the 2D horizontal model. 
His result, commonly called ‘dispersion’, was extended to various environmental flow fields by many 
researchers (Fischer et al., 1979). 

 
For the accurate prediction of transport, an accurate transport numerical solver which can minimize 

the numerical dispersion, dissipation and diffusion should be developed. Recently, the FVM using 
approximate Riemann solvers has been developed and applied successfully, for example, Mingham and 
Causon (2008). The FVM has many advantages. Especially, in the view of eigen structure, the 
advection equation has the same approximate Riemann solver with the equation of tangential velocity 
of homogeneous shallow water equations (Toro, 2002). Hence, the exactly same numerical method for 
the leading-order terms of the Boussinesq equations can be used for the advection terms of the transport 
equation with consistency. 

 
In this paper, the turbulent transports by the long waves and currents is investigated. The 

Boussinesq-type equations with subgrid turbulence closure are introduced. In the next section, a depth-
integrated transport equation is introduced. The numerical methods for the transport equation and the 
test results are briefly presented. The turbulent transport by a plane mixing layer and by bottom 
topography are presented in the following sections. 

 

DEPTH-INTEGRATED FLOW MODEL  

Dispersive Stress by the velocity Fluctuation  
 

The 3D space, the spatially-filtered continuity and Navier-Stokes equations for incompressible 
flow are given by 
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where the overbar means the filtering operator. The subscripts i,j = (1,2,3). t is time and ui∗ is the 
velocity vector, p* is pressure, ρ is the density of water, ν is the kinematic viscosity of water, Sij∗  is a 
strain rate tensor, and τij∗  is the residual stress tensor. To derive the depth-integrated flow equations, a 
perturbation approach based on long wave scaling is used.  
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lo
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ho
 ,    t = t∗�gho

lo
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ho
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ho
 , 

                     (u, v) =  (u∗,v∗)
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h* is the water depth and ζ∗ is the water surface elevation, which is a function of (x*,y*,t*). g is the 
gravitational acceleration. A standard parameter for scale analysis of long waves is introduced and its 
magnitude is assumed to be O(µ2) ≪ 1.0. The nondimensional horizontal eddy viscosity is given by 

 

νth =  νt
h∗

αho�gho
                                                       (4) 
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where α= Cs2∆2  in which Cs =0.2 is assumed here to be a constant and ∆ is the grid size. The 
nondimensional vertical eddy viscosity is given by 

 

νtv = νt
v∗

βµho�gho
                                                (5) 

 
where the β is required to be β=ch√cf/µ and O(β) << 1.0. With these variables and parameters, the 
filtered dimensionless form of the continuity equation and the Navier-Stokes equations in the 
horizontal direction can be derived.  
 

As a next step, by applying the depth-averaging operator, ‘tilde’, to the filtered dimensionless form 
of the continuity equation and Navier-Stokes equations, a 2D horizontal equation set can be derived. 
By the way, during the derivation of a H2D model, the dispersive stresses, or momentum fluxes due to 
the interaction of velocity fluctuations, are usually ignored following the assumption of a constant 
vertical velocity profile. Even in the Boussinesq-type model of Kim et al. (2009) that assumes a depth-
varying velocity UB(z) as shown in Figure 1, the fluctuating component u'i

 

 is ignored. This term, and 
the associated mixing, can be important for the prediction of kinetic energy transport in environmental 
flows. 

 
 
Figure 1. Definitions of velocity notations. 𝑢� : depth averaged velocity; 𝑢: total velocity including fluctuating 
velocity component; 𝑢′: spatially fluctuating velocity component; 𝑼𝐵: velocity profile by Kim et al. (2009). 

 
 
To approximate the effects created by the u'i
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 term, Hinterberger et al. (2004, 2007) proposed a 
stochastic BSM for the shallow water equations. Here, we will incorporate this approach into the 
Boussinesq-type equations of Kim et al. (2009). First, by integrating the filtered Navier-Stokes 
equations over the depth, the following equation is obtained: 

                       αµ ∂
∂xj
�2HνthSıȷ����� − βµ22 ∂

∂xi
�νtv

∂uj
∂xj
� −  βµ2τib −  γ2

∂HDij(u�)

∂xj
                          (6) 

 
 

where the depth-averaged velocity is given by 
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in which Ui is the horizontal velocity at an arbitrary water depth zα and UBi=Ui+µ2ui
φ + βµuir Pand 

ui
φ and ui

φ are the second-order rotational and irrotational velocity corrections, respectively (Kim et al., 
2009). The newly introduced γ is a scale parameter and its magnitude will be assessed later. From the 
depth-averaging process, equation (6), the dispersive stress Dij

 
(u) is given by 

                            Dij(u�) =  1
H ∫ (u�i − u��iH )�u�j − u��j�dz   

                    =  µ2γ �uı
ф���uȷ′�
�

+ uı′�uȷ
ф����
� + βµγ�uır� uȷ′�� + uı′�uȷr�� � + γ2uı′�uȷ′��                       (8) 

 
As described in Kim et al. (2009), the bottom friction term can be included through a consistent 

derivation from the viscous primitive equations; By assuming that the shear stress varies linearly from 
zero at the water surface to τb at the bottom (Rodi, 1980). Finally, the bottom friction term has the 
scale of βµ2 based on the parameters proposed in this paper. Following this analysis and considering 
that the typical magnitude of the shear stress is similar to the Reynolds stress, we can deduce γ2 = 
O(βµ2

 

). Consequently, in the dispersive stress terms in the last line of equation (8), the first and the 
second terms are smaller than the third (last) term. Thus, only the last term is sustained through the 
derivation, while the first two terms are lumped within the truncation error of the model, and discarded. 
Equation (6) then becomes: 
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Depth-Integrated Eddy Simulation Model 
In this section, the final form of the model equations will be presented, with the employed 

turbulence closures, in dimensional form.  For convenience of expression, all the dimensional variables 
are given without the superscript ‘*’ after dimensionality is recovered. Also, the overbar for the 
notation of the filtering is not expressed from here. Including the dispersive stress terms above, the 
depth-integrated equations in conservative form with subgrid scale turbulence closure are given by 
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in which i,j=(1,2), M and Mν are the second-order dispersion and vorticity correction terms of the 
continuity equation, respectively. In the momentum equation, Di and Di

ν

 

 are the frequency dispersion 
corrections due to free surface waves and bottom-generated turbulence respectively. ξı� and ξiν are the 
rotational corrections due to free surface waves and turbulence respectively. More details about these 
higher-order terms and other terms can be found in Kim et al. (2009).  

The HFi

 

 term representing the dispersive stresses in equation (11) is implemented with a stochastic 
BSM proposed by Hinterberger et al. (2004, 2007).  

Fi =  CB
�u�2+v�2

H
�ν√cf

∆t
ri                                                    (12) 

 

DEPTH-INTEGRATED TRANSPORT MODEL  
Here, Taylor's analysis is followed, in essence, to derive a depth-integrated transport equation for a 

scalar property. The same long wave scaling and dimensional analysis as used previously for the 
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hydrodynamic model is applied.  With the turbulent diffusion expressed as νt∗/σt and the magnitude of 
turbulent Schmidt number is assumed to be 1.0, the turbulent diffusion scaling can be given by 

 
�Dx, Dy� =  (Dx∗ ,Dx∗ )

αho�gho
 ,   Dz =  Dz∗

βµho�gho
                                     (13) 

 
where Dx  and Dy  are the nondimensional horizontal turbulent diffusion terms and Dz is the 
nondimensional vertical turbulent diffusion. Applying the perturbation approach with the scaling in (3) 
and (13) and by depth-integration, the 3D advection-diffusion equation for some scalar concentration C 
can be transformed to 
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where Dxi is horizontal turbulent coefficient and given by  Dxi = νt∗/σt. DLij is the dispersion coefficient 
and given by  
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in which u"is the deviation of the velocity and the dispersion coefficient can be expressed explicitly via 
equation (7) using the analytical vertical velocity profile of the Kim et al. (2009) model. After some 
algebra, 
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where the definitions of the each terms can be found in Kim et al. (2009). The tedious expression can 
be verified through a look at the case of uniform flow.  With uniform flow, κ/6 = 0.0667 from the 
standard von Karman value, and σt = 0.8302, equation (16) yields the dispersion coefficient 5.93Huτ.  
Thus, for application of the transport model in future sections of this paper, σt = 0.8302 is used. 
 

NUMERICAL METHOD  
The fourth-order accurate MUSCL FVM (Yamamoto and Daiguji, 1993) with HLL Riemann 

solver (Toro, 1997) is used for the advection terms in equation (14). For the diffusion terms, fourth-
order finite volume discretization equations are used. The time integration utilizes the third-order 
Adams-Bashforth predictor and the fourth-order Adams-Moulton corrector scheme. Details of the 
numerical method for flow model are well described in Kim and Lynett (in press, b). For the transport 
equation, detail numerical methods are described in Kim and Lynett (in press, a). In the reference, 
several typical tests to demonstrate the accuracy of the transport model are provided.  

 

TURBULENT FLOW AND TRANSPORT SIMULATIONS  

Mixing layer Simulations  
To investigate the mixing by internal transverse shear instability, flow in a plane mixing layer 

experimented by Babarutsi and Chu (1998) is simulated with the depth-integrated model with BSM 
model. The dimension of the channel is 0.61m wide, 7m long, and the water depth h=0.0296m. The 
inflow section is divided by a plate as shown in Figure 2. At the upstream boundary, the velocity on 
one side of the plate, in the lower half of the channel, is u1=0.111m/s and the velocity on the other side 
is u2=0.264m/s. For the numerical simulation, the grid size=0.2h and CB

 
=100 are used. 

 

 
 

Figure 2. Schematic diagram of Mixing Layer 

 
Figure 3 shows the <u> (time mean velocity) and the u'rms (root mean square value of the velocity 

fluctuation in the streamwise direction) by the depth-integrated flow model with BSM and the 
measurement. The discrepancy around the downstream mainly resulted from the different downstream 
boundary conditions between the experiment and the numerical simulation, and from the freeslip 
condition at the side walls in the numerical model. However, the computed <u>, the slope of the <u> 
profile into the transverse direction and the spreading rate of the mixing layer agree well with the 
experimental data in overall sense. These good agreements are observed again in the comparison of the 
u'rms, so reasonable prediction of the energy transport and scalar mixing by turbulent flow are expected. 
 

However, without the BSM, that is only with the hydrodynamic model, the spreading rate and the 
slope of the <u> do not agree with the experimental data as shown in the Figure 4. Especially, the value 
of the u'rms is too small and even the tendency is absolutely different: The computational results are 
continuously getting bigger as flows toward the downstream unlike the experimental data. The main 
reason of the overall discrepancies resulted from that the strength of the horizontal shear of the 
numerical model without BSM is not strong enough to destabilize in the mixing layer. Therefore the 
3D turbulence effects in the equation (9) should be included in the case of destabilization by internal 
transverse shear. 
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Figure 3. Comparisons of the depth-integrated flow model with BSM results and experimental data. Left: time 
mean velocity (m/s). Right: root mean square velocity (m/s). Circle: experimental data (by Babarutsi and 
Chu ,1998), line: numerical results. 

 

 
Figure 4. Comparisons of the numerical results without BSM and experimental data. Left: time mean velocity 
(m/s). Right: root mean square velocity (m/s). Circle: experimental data (by Babarutsi and Chu, 1998), line: 
numerical results. 
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Comparison to Taylor’s Theorem 
Rummel et al. (2005) presented the results of an experimental study to determine the magnitude of 

mixing coefficient for a passive tracer plume in shallow open channel flow. Also they presented two 
analytical solutions for the near field and far field mixing based on the Taylor's theorem (1921). These 
results are compared with the numerical simulation results quantitatively in this section. From the 
solutions, we can see that the σy/h is a function of the transverse turbulent intensity and proportional to 
(x/h) in the near field and proportional to (x/h)0.5 in the far field. Hence, numerical results should be 
related with the turbulent intensity and should show the similar proportionality with the analytical 
solutions in the near and far fields, respectively. In the laboratory experiment, the flow conditions 
resulted in the turbulent intensity iy=0.06. In the numerical simulation, the CB=70 resulted in the 
iy

 

=0.06 and randomly distributed scalar distribution. In the experiment done by Rummel et al. (2005), 
the channel length was 13.5m and the width was 5.5m. The water depth was h=0.025m and the velocity 
was U=0.16 m/s, resulting in the Re=4000. The bed friction coefficient was given by f=0.029 from the 
experiment. The dye was injected through a 0.001m diameter tube into the streamwise direction 
constantly at the middepth.  

The Figure 5 shows the characteristic plume half widths by the experiment and the numerical 
simulation. In far field, the slope (qualitative characteristic) and the width (quantitative characteristic) 
agree well each other. In near field, the slopes of the analytic solution and the numerical and 
experimental data show a little difference. It resulted from the limitation of 2D horizontal model. That 
is, in near field, the flow in numerical model is still 2D motion in overall sense, but contains highly 3D 
small scale turbulence in real spaces which cannot be resolved by a 2D horizontal model. Looking back 
to the derivation of the depth-integrated transport equation, during the derivation of depth-integrated 
transport equation several assumptions which are not valid in near field were applied (Kim and Lynett, 
in press, a). Therefore, a different dispersion model specialized for the near field or a 3D model is 
required for more accurate near field mixing simulations. 
 

 
 
Figure 5. Normalized standard deviation σy/h of the transverse concentration profiles. Line: analytic (by 
Rummel et al, 2005), circle: computed results, cross: measured data (by Rummel et al, 2005). 

 

Mixing by Topographical Forcing 
It is greatly important to investigate the effects of topography like islands to flows, because their 

effects that can cause instability and coherent structures are very strong (Jirka, 2002). Thus in this 
section, the mixing by the 2D coherent structures generated by the typical islands is investigated. 

 
For the investigation, the flows studied by a laboratory experiment and numerical model were 

selected. The laboratory experiment was conducted by Lloyd and Stansby (1997). The experimental 
setup was: The 0.049m high island with 8 degree side slope was installed at the 5.0m downstream from 
the inlet. The channel length was 9.75m and the width was 1.52m. The outer radius and the inner radius 
of the island were 0.375m and 0.025m, respectively. A steady streamwise flow with velocity 0.115m/s 
was released at the upstream boundary. Two different cases were tested. The water depth was 0.054m. 
Thus the Reynolds numbers are Re=6210. For the numerical simulation, the grid size is 0.01m, the 
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CB

 

=70 and the Cr=0.5 were used. For the scalar transport simulations, the numerical dye is injected at 
the 0.5m upstream of the island. 

For the submerged island case, the water depth was so shallow at the apex of the island that the 
separation was observed at the downstream lip of the horizontal apex and across the upper shoulder 
(Lloyd and Stansby, 1997). Thus, the 2D coherent structure can be generated by the topographical 
forcing. The Figure 6 shows the computed results by the depth-integrated flow model with BSM model 
and the computed concentration looks similar to the experimental data in Lloyd and Stansby (1997). 
The 2D coherent structures were generated very reasonably without the BSM as shown in the Figure 7. 
However, it will be very hard to decide whether the effects of the 3D turbulence is important or not in 
real applications, because the topography is so arbitrary. Hence it is recommended include the BSM for 
an important simulation. In conclusion, the proposed depth-integrated flow model with BSM model is 
expected to be able to predict the mixing by topographical change. 

 
 

 
Figure 6. Computed results for submerged case by DEPTH-INTEGRATED FLOW MODEL. (a) water surface 
elevation, (b) scalar concentration, (c) vertical vorticity.. 
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Figure 7. Computed results without BSM for submerged island case. (a) scalar concentration, (b) vertical 
vorticity. 
 
 

SUMMARY 
 
For the turbulent transport by long waves and currents, the 3D turbulent effects were incorporated by a 
perturbation approach into the fully nonlinear Boussinesq equations which are for weakly dispersive 
and rotational flow.  
 
A depth-integrated scalar transport equations were derived by the same perturbation approach based on 
the long wave scaling for consistency. The dispersion coefficient was derived based on the vertical 
velocity profile of the Boussinesq-type equations.  The proposed equations were solved by a fourth-
order accurate FVM. Several typical tests for the verifications of the scalar transport solver showed 
very good agreements with analytical solutions. Especially, very little error by numerical dispersion, 
dissipation and diffusion were detected. 
 
From the mixing layer simulation with the stochastic BSM, the importance of the 3D turbulence effects 
to the turbulent transport was apparently proved. The comparisons with the Taylor's theorem showed 
that the proposed depth-integrated transport model coupled with the DISGS model has the consistency 
with the analytic solutions and the experimental data in far field. From the comparison in near field, the 
inherent limitation of the 2D horizontal model was recognized. In the simulations of the mixing by the 
bottom topography, the effects of the 3D turbulence effects were less important than the other cases. 
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