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THE INTERACTION OF OBLIQUE WAVES WITH 
A PARTIALLY IMMERSED WAVE ABSORBING BREAKWATER 

Yong Liu1 and Yucheng Li2 

By considering obliquely incident waves, the hydrodynamic performance of a partially immersed wave absorbing 
breakwater is examined in this study. The breakwater consists of a perforated front barrier and a solid rear barrier. The 
two barriers are both partially immersed with the same draft. An analytical solution based on the linear potential 
theory is developed to calculate the reflection and transmission coefficients of the breakwater and the wave forces 
acting on the barriers. Some useful results are presented according to numerical examples. The present solution may 
be used at a preliminary design stage in practical engineering. 
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INTRODUCTION 
Various perforated or porous breakwaters have been widely used in coastal engineering due to 

their powerful abilities of dissipating wave energy from open sea. The dissipation of wave energy can 
lead to lower reflection coefficients. This is significant to suppress the seabed scouring in front of the 
breakwater. The lower reflection is also helpful to the safe navigation and berth of vessels near the 
structures. So studying the hydrodynamic performance of perforated or porous breakwaters, which 
may also be called as wave absorbing breakwater, is important for practical engineering.  

A typical and often used wave absorbing breakwater proposed by Jarlan (1961) includes a 
perforated front wall, a solid rear wall and a wave absorbing chamber between them. The wave 
absorbing performance of this type of breakwater is mainly determined by the relative wave chamber 
width B/L, where B is the wave chamber width and L is the incident wavelength. According to Chwang 
and Dong (1984) and Fugazza and Natale (1992), the original Jarlan-type breakwater will attain a 
minimum reflection coefficient at B/L = 0.25 in theory, if ignoring the inertial effect of the perforated 
front wall. More studies on the Jarlan-type breakwater can be found in many published literatures (e.g., 
Tanimoto and Yoshimoto, 1982; Bennett et al., 1992, Suh et al., 2006, Li, 2007).  

It is noted that the traditional wave absorbing breakwaters are bottom-standing. Thus the free 
water circulation between the open sea and the shelter region fails. An alternative wave absorbing 
breakwater is partially immersed perforated structures (e.g., Cox et al., 1998; Brossard et al., 2003). 
For this concept, the wave absorbing structure is fixed by plies and extends from above the sea surface 
to some distance above the seabed. Then the under gaps allow the seawater circulation, the sediment 
transport and the fish passage. This can prevent the deterioration of coastal marine environment. The 
partially immersed wave absorbing breakwater can also dissipate the incident wave energy effectively, 
and thus may lead to simultaneous lower reflection and transmission coefficients. This is rather 
significant for practical engineering. However, analytical studies on the hydrodynamic performance of 
partially immersed wave absorbing breakwater have been scarcely referred so far. This is just the main 
objective of this paper. In the next section, an analytical solution for the interaction of oblique waves 
with partially immersed wave absorbing breakwater is developed. In section 3, the analytical solution 
is validated by previous predictions for limiting cases and previous experimental data. In section 4, 
numerical examples are presented to examine the hydrodynamic performance of the breakwater. 
Finally, the main conclusion of this study is drawn. 

MATHEMATICAL FORMULATION AND SOLUTIONS 
As shown in Fig. 1, we consider the interaction of obliquely incident waves with a partially 

immersed wave absorbing breakwater. The breakwater includes a perforated front barrier and a solid 
rear barrier. The 3D Cartesian-coordinate system is adopted to describe the present problem. The 
origin is located in the intersection of the still water level and the midline of two barriers. The x-axis is 
in direction of wave propagation, the y-axis lies along the length direction of the breakwater, and the z-
axis points vertically upwards. The two barriers have the same draft denoted by a. The space between 
the two barriers is B. The water depth is d. The height and wavelength of incident wave are H and L, 
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respectively. The included angle between the incident wave propagation direction and the positive x-
direction is β. To obtain the analytical solution, we divide the whole fluid domain into three regions: 
region 1, the fluid domain in front of the front barrier; region 2, the fluid domain between the two 
barriers; and region 3, the fluid domain behind the rear barrier. We note that the thicknesses of the two 
barriers are both very small in comparison with the incident wavelength. So they are both treated as 
zero for the scattering of water waves by the breakwater. 
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Figure 1. Definition sketch for the breakwater: the upper is bird view and the under is side view.  

 
Considering linear potential theory and harmonic waves with an angular frequency ω, we can 

write the fluid velocity as 
0i i( , , , ) Re ( , )e eyk y tΦ x y z t x z ωφ −⎡ ⎤= ⎣ ⎦                        (1) 

where g is gravitational acceleration, k0y is the component of incident wave number k0 in the y-
direction, and t is the time. Then our main objective is to obtain the time-independent velocity potential 
φ. The spatial potential in each sub region satisfies the modified Helmholtz equation: 
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where the subscript j denotes variables in the sub-region j. The spatial potentials also satisfy the linear 
free surface condition and boundary condition on the seabed:  
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In addition, the reflected and transmitted waves must be outgoing in the far fields.  
By the separation of variables, the velocity potentials satisfying the modified Helmholtz equation 

and the above boundary conditions can be written as: 
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where, 0 0i xkα = − , 2 2
0n n yk kα = + ; 0 0 cosxk k β= , 0 0 sinyk k β= ; Rn, An, Cn and Tn are unknown 

complex expansions coefficients, and Zn(z) are depth-dependent functions as follows:  
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The wave numbers kn are the positive roots of the following dispersion relations: 
2

0 0tanh( ) tan( )ngk k d k dω = = − , 1,2,...n =                 (9) 
To obtain the four sets of unknown coefficients in Eqs. (5) – (7), we consider the following 

matching conditions between different sub-regions:  
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where G is the porous effect parameter defined as follows (Yu, 1995):  
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in which, ε, f and s are the porosity, the linearized resistance coefficient and the inertial effect 
coefficient of the perforated barrier (Sollitt and Cross, 1972); and δ is the thickness of the barrier. We 
note that the thickness of the barrier is considered when calculating the porous effect parameter. We 
also note that when |G| = 0, the perforated barrier reduces to a solid barrier; while for |G| → + ∞, the 
barrier becomes entirely transparent. Moreover, the Eq. (12a) is the porous plate boundary condition 
(Yu, 1995). It denotes that the normal fluid velocity passing through the perforated barrier is linearly 
proportional to the pressure difference between the two sides of the barrier. 

Inserting Eqs. (5) – (7) into Eqs. (10) and (11) and using the orthogonal relation 
0

( ) ( )d 0 ( )m nd
Z z Z z z m n

−
= ≠∫ , gives:  
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where 1nmδ =  at n m=  and 0nmδ =  at n m≠ . Inserting Eqs. (5) – (7) and Eqs. (15) and (16) into the 
matching conditions, Eqs. (12) and (13), gives two set of double series with the unknown coefficients 
of An and Cn. By using a least square method (Dalrymple et al., 1990) and truncating n to N, the two 
double series are transformed into two sets of linear equations. Solving the linear equations gives the 
unknown coefficients. Then various hydrodynamic parameters of engineering interest can be obtained.  

The real reflection and transmission coefficients, R and T, are calculated by 
0R R=                                                                                    (17) 
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0T T=                                                                                      (18) 
The spatial dynamic pressure at any point in the fluid domain can be calculated by using the linear 

Bernoulli equation:  
0 0i ii i( , , , ) Re ( , )e e Re i ( , )e ey yk y k yt tP x y z t p x z x zω ωρωφ− −⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ (19) 

where ρ is the fluid density. W e note that for oblique waves, the dynamic pressure acting on the 
breakwater varies periodically along the y-direction. So we only consider the wave forces acting on the 
cross section of the barriers. Here the wave forces are normalized by ρgHd. Then the dimensionless 
wave forces acting on the front and rear barriers can be calculated, respectively, by 

0
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It should be mentioned that in the following calculations, a large truncated value of N = 400 is 
used due to the singularity in flow at the tips of the barriers. At this time, the results are sufficiently 
accurate for engineering purposes.  

VALIDATIONS 
The present solution was validated by compared the calculated results with previous analytical 

results (Porter, 1995; Das et al., 1997) and previous experimental data (Cox et al., 1998).  
When |G| approaches infinity, the perforated front barrier vanishes and the present breakwater 

reduces to a single partially immersed solid barrier. At this time, the present calculated reflection and 
transmission coefficients were compared with the corresponding results of Porter (1995), as shown in 
Fig. 2. The calculating conditions are: a/d = 0.5, G = + ∞ and k0d = 2.0. The results of Porter (1995) 
were obtained by a multi-term Galerkin approximation. Their results are extreme accurate. It can be 
seen from Fig. 2 that the agreement between present prediction and Porter (1995) is very well. When 
|G| approaches zero, the perforated front barrier becomes a solid barrier and the present breakwater 
reduces to double partially immersed solid barriers. At this time, the present calculated reflection 
coefficient was compared with the corresponding result of Das et al. (1997), as shown in Fig. 3. Here 
the calculating conditions are: a/d = 0.6, G = 0.0, B/d = 2.0 and β = 30°. It is evident from Fig. 3 that 
the agreement between the two different results is very well. 
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Figure 2. Comparison between present results and predictions of Porter (1995): a/d = 0.5, G = + ∞ and k0d = 
2.0. 
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Figure 3. Comparison between present results and predictions of Das et al. (1997): a/d = 0.6, G = 0.0, B/d = 
2.0 and β = 30°. 
 

For normally incident waves, Cox et al. (1998) have obtained a series of experimental data for the 
reflection coefficient of the partially immersed wave absorbing breakwater. The present predictions of 
the reflection coefficient were compared with the experimental results of Cox et al. (1998), as shown 
in Fig. 4. Here the porous effect parameter G of the front barrier was calculated by Eq. (14). For 
calculating G, ε = 20% was adopted as used in the tests, s = 1 was adopted as usual, and the resistance 
coefficient f was estimated by a simply empirical formula of Li et al. (2006): 

23338.7( ) 82.769( ) 8.711f d dδ δ= − + + ( 0.0094 0.05dδ≤ ≤ ). The value of the dimensionless 
barrier thickness δ/d (barrier thickness / water depth) was not given in Cox et al. (1998). A reasonable 
value of δ/d = 0.02 was adopted. It can be seen from Fig. 4 that the present results agree reasonable 
with the experimental data of Cox et al. (1998). 
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Figure 4. Comparison between present results and experimental data of Cox et al. (1998): β = 0° and ε = 20%. 
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RESULTS WITH DISCUSSION 
Figs. 5 and 6 show the effects of the relative space B/L between the two barriers on R, T, Ff and Fr. 

Here the calculating conditions are: k0d =2.0, a/d = 0.4, β = 30° and G = 0 in Fig.5 and G = 2.0 in Fig. 
6. It can be seen from Fig. 5 that for the double solid barriers, the reflection coefficient may attain a 
very small value (even zero) with the increasing value of B/L. But the transmission coefficient 
corresponding to the smaller reflection coefficient is very large. So the smaller reflection coefficient is 
not significant in practice. For the present wave absorbing structure, it is satisfactory to find in Fig. 6 
that the reflection and transmission coefficients can simultaneously attain lower values. This is due to 
the wave energy loss caused by the perforated front barrier. At this time, the wave force coefficients Ff 
and Fr are also small. This is a mainly merit of the present wave absorbing breakwater. 

The effects of the angle of incident waves on R, T, Ff and Fr are shown in Figs. 7 and 8. Here the 
calculating conditions are: k0d = 2.0, G = 0.3, a/d = 0.4 and B/L = 0.2 in Fig. 7 and B/L = 0.6 in Fig. 8. 
It can be seen from these two figures that the variations of R, T, Ff and Fr versus β is relevant to the 
value of B/L. Generally, a trough can appear in the curve of the reflection coefficient with the 
increasing value of β. When the angle of incident waves tends towards 90°, the transmission 
coefficient approaches unity and the reflection coefficient and the dimensionless wave forces all 
approach zero. By considering all the four hydrodynamic parameters, the partially immersed wave 
absorbing breakwater works better at a moderate angle of incident waves. 
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Figure 5. Effects of B/L on R, T, Ff and Fr: k0d = 2.0, G = 0.0, a/d = 0.4 and β = 30°. 
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Figure 6. Effects of B/L on R, T, Ff and Fr: k0d = 2.0, G = 0.3, a/d = 0.4 and β = 30°. 
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Figure 7. Effects of β on R, T, Ff and Fr: k0d = 2.0, G = 0.3, a/d = 0.4 and B/L = 0.2. 
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Figure 8. Effects of β on R, T, Ff and Fr: k0d = 2.0, G = 0.3, a/d = 0.4 and B/L = 0.6. 

 
Fig. 9 shows the effects of the relative draft a/d on R, T, Ff and Fr at k0d = 2.0, G = 0.3, B/L = 0.2 

and β = 30°. It is evident from Fig. 9 that with the increasing value of the relative draft, the 
transmission coefficient decreases to zero monotonously. However, the reflection coefficient does not 
necessarily increases with the increasing value of a/d. This has also been observed in the experimental 
tests of Brossard et al. (2003). This phenomenon should be carefully considered in practical design of 
partially immersed wave absorbing breakwaters. From Fig. 9, we also note that the dimensionless wave 
force on the front barrier increases with the increasing value of a/d. But the dimensionless wave force 
on the rear barrier decreases slightly when a/d exceeds 0.4.  
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Figure 9. Effects of a/d on R, T, Ff and Fr: k0d = 2.0, G = 0.3, B/L = 0.2 and β = 30°. 
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Fig. 10 shows the effects of |G| on R, T, Ff and Fr at k0d = 2.0, G = |G|e0i, B/L = 0.2, a/h = 0.4 and 
β = 30°. It is evident from this figure that the reflection and transmission coefficients attain minimum 
at a moderate value of G (a moderate geometrical porosity of the perforated barrier). At this time, the 
energy loss coefficient calculated by 1–R2–T2 attains maximum. This has been observed by Yu and 
Chwang (1994) for a submerged horizontal porous plate. From Fig. 10, it is also evident that the 
dimensionless wave force on the perforated front barrier decreases to zero with the increasing value of 
|G|. This is physically natural. But the variation of |G| has no significant effect on the dimensionless 
wave force on the rear barrier. 
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Figure 10. Effects of |G| on R, T, Ff and Fr: k0d = 2.0, G = |G|e0i, B/L = 0.2, a/h = 0.4 and β = 30°. 

 
According to the above numerical results, the hydrodynamic performance of the partially 

immersed wave absorbing breakwater is sensitive to the variations of B/L, β, a/d and G. So theses 
parameters must be carefully determined in practice design. Also we note that the inertial effect of the 
perforated barrier (denote by the imaginary part of G) is not analyzed. Generally, the inertial effect 
may lead to lower reflection coefficients at smaller values of B/L. For a very thin perforated barrier, the 
inertial effect may be not significant. 

CONCLUSIONS 
This study has developed an analytical solution to the scattering of obliquely incident linear water 

waves by a partially immersed wave absorbing breakwater consisting of a perforated front barrier and a 
solid rear barrier. The eigenfunction expansion method and a least square method are adopted in the 
solution. The present solution has been validated by comparing calculated results with previous 
predictions for limiting cases and previous experimental data. Numerical examples have been 
presented to examine the hydrodynamic performance of the breakwater. It is found that the wave 
absorbing performance of the breakwater is sensitive to the relative space between the two barriers, the 
angle of incident waves, the relative draft of the breakwater and the porosity of the front barrier. With 
suitable relative space between two barriers, the reflection coefficient, the transmission coefficient and 
the dimensionless wave force on each barrier may be simultaneously small. A moderate angle of 
incident waves is more helpful to obtain better wave absorbing performance and smaller wave forces. 
Increasing the relative draft decreases the transmission coefficient, but does not necessarily increase 
the reflection coefficient. The new developed solution may be used at a preliminary design stage for 
practical designs. Also the present results should be useful to the further experimental investigations. 
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