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A modeling system that considers both long- andtdleom process-driven shoreline change is predentéhe

modeling system is integrated into a data assimildtamework that uses sparse observations oefherchange to
correct a model forecast and to determine unobdemedel variables and free parameters. Applicatibithe

assimilation algorithm also provides quantitativatistical estimates of uncertainty that can beliagpto coastal
hazard and vulnerability assessments. Signifiatention is given to the estimation of four norsetvable
quantities using the data assimilation framewoek thilizes only one observable process (i.e. @@ change). The
general framework discussed here can be appliethtty other geophysical processes by simply charthmgnodel

component to one applicable to the processes erfesit
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INTRODUCTION

Shorelines represent the dynamic boundary sepgragiaches from the continual impact of waves,
winds, surge, and tides. This boundary evolves tmescales of hours (e.g., changing tides or wave
conditions) to decades (land subsidence, rising legal, etc). The full spectrum of processes
responsible for forcing evolution of the shorelisaot well understood, hindering the developmént o
skillful predictive models. The need for such migddnowever, is becoming increasingly clear as
coastal managers require information about shaawolution to plan construction setbacks, beach-
nourishment projects, and to assess coastal vilitigrdo a variety of natural events.

Most existing studies of shoreline evolution comsidong-term or short-term processes in
isolation. When considering the former, the typigpproach consists of determining the shoreline
migration rate using a linear regression of his@rshoreline position. Observations scatterediabo
the best-fit regression line are considered noi3dis type of analysis is intended to characterize
historical response and is, essentially, a hindeastel of shoreline change. If predictions otufet
positions are required from this approach, theyexteapolated using the best-fit slope. Thereaare
number of inherent problems in forecasting shoeelposition with this method. This approach
neglects acceleration of the shoreline-changeatadecliminates all short-term process-driven slozel
change. Moreover, because shoreline positions #em aneasured immediately after large storm
events, the data may provide change rates thabiased high by neglecting natural beach recovery
(e.g., Frazier et al. 2009).

Studies of short-term process-driven shoreline ghaitempt to focus more on annual and storm-
driven change by assuming that the primary drigethé incident wave height (e.g., Miller and Dean
2004, Yates et al. 2009). Unfortunately, the exalztion between wave height and shoreline pasitio
is unclear. This leads to highly parameterized ealibrated models that are site-specific and do no
account for temporal variations in the model fregameters. Moreover, the time horizon of coastal
managers is dependent on the application at haimrefore, a model that considers both long- and
short-term processes will provide greater flexibilin determining vulnerability assessments and
project planning. Finally, assessment of coastiharability and risk must always take into account
some level of uncertainty. Unfortunately, the eatrnumerical models can only provide information
about hindcast model performance (i.e., spreaddity in best-fit parameters, etc.) and do not
provide adequate information about forecast unogyta

Given the unknowns associated with predicting divereevolution, it is inevitable that as the
prediction horizon increases, the model accurady deigrade. Eventually, the uncertainty in the
forecast will reach a point that renders it usele®@sie method to help ‘guide’ numerical models used
for long-term predictions is to periodically updatee forecast with available observations. This
correction serves to re-initialize the modeled posi However, neither the model nor the data &hou
be considered as exact. They are both methodshéhatestimate a particular geophysical state, but
they both have limitations. Measurements suffemfiinstrument noise and offsets, and are spatially
and/or temporally sparse. Models, on the othedhamst employ parameterizations of sub-grid-scale
processes and often suffer from poor initial orfmary conditions. Therefore, the ideal approach to
coastal-change forecasting is one that combineiti@ent advantages of models and data to obtain
accurate forecasts with the additional benefiteihf) able to quantify the uncertainty in the conekin
forecast.
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This work represents an effort to devise a numenwadel capable of forecasting combined long-
and short-term shoreline evolution and implementings part of a data assimilation framework for
coastal change. The data assimilation scheme giishis three goals: 1) periodically correcting th
modeled shoreline position with available obsepratito prevent forecasts from diverging from the
true state; 2) estimating shoreline positions, ssand model free parameters; and 3) providing a
guantitative measure of the forecast uncertaingetdan knowledge of the accuracy of both the model
and the data. The numerical model and data asdiaml strategy are documented in the second and
third sections, respectively. We then presentraatestration of this method using an idealized model
scenario followed by brief concluding remarks.

SHORELINE-EVOLUTION MODEL
Shoreline positionX(t), is treated here as the summation of a positiomedriby long-term
processes¥;;(t), and a short-term positioX,,(t), such that

X() = X (0) + Xse (0. 1)

The position of the shoreline, considering onlygdarm processes (such as sea-level rise), can be
expressed with a typical linear model using a yeeohstant change rafe;.). With this, changes in
the shoreline position are represented as

Xlt(t + At) = Xlt(t) + UltAt. (2)

At this stage, we do not actually attribute thegiderm shoreline movement to a particular process,

do we perform a linear regression to determineagmglicable change rate. Instead, we will use the
combined model and available data to simultaneodistgrmine the long- and short-term model states
and parameters.

We assume that shorter-term variations in the $herposition are driven by the incident wave
height and use the equilibrium model approach ahPét al. (1999). Equilibrium theory assumes that
for a given wave height, there exists a shorelingitipn such that the beach would be in equilibrium
(i.e., remain stationary with stationary wave fog}. Variations of this method have been appbgd
other studies of shoreline evolution (e.g., Milterd Dean 2004, Yates et al. 2009) when considering
shoreline time series on the order of years. @fsm, because the wave height varies continuotiely,
beach is constantly trying to move from one equiiilm state to another and may never reach
equilibrium, depending on the rate at which the evdweight changes. This method provides a
description of the rate of shoreline movement, base the present position of the shoreline and the
natural equilibrium condition it is trying to ackie

= —a H(OP[X,e(£) — BH(D)]AL @3)
In Equation 3,H(t) represents the time varying wave height gnis a free parameter that linearly
relates the wave height to the associated equitibrshoreline position. The term in front of the
brackets—a, H(t)?, describes how fast the shoreline is able to mow the present positioiX, (t))
to the equilibrium position and is assumed to batee to wave height so that large waves move the
shoreline position faster than small waves.

The combined model for shoreline position is then:

X(t) = X, (t) + v At + X () — a, H(OP [ X () — BH(E)]AL 4)

The model is solved using a forward Euler finitéfetence scheme with either a measured wave-height
time series (hindcast) or a schematized/climatokdgivave-height time series (forecast). We use a
time step of 0.1 months, and the model predictionpdated with the data assimilation filter dessulib
below at time steps when observations of shorglogtion are available.

DATA ASSIMILATION ALGORITHM

The combination of modeled and observed shorelogitipn is achieved using the Kalman filter
(Kalman 1960, Maybeck 1979). Here, the Kalmanefilserves as an optimal data-processing
algorithm that allows for a way to combine obsereed modeled information about a physical state
(i.e., shoreline position). The filter minimizt®e variance of the error in the analyzed statel(des
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model forecast and observed state) and becauseaitrécursive filter, it is necessary to store prio
information from only the most recent time stepenke, it is a computationally efficient algorithm,
which is essential for long-term forecasting. Qtaatons of the state can be non-uniform in spaxk a
time and inferred from different types of instrurteewith different noise thresholds.

The general form of the Kalman filter is given by:

Yo =yl +K(d—MyS) (%)

where is the physical state of interest apdl andi® represent the forecasted and analyzed state,
respectively. The forecasted state correspondketovalue predicted by the model at that time step,
while the analyzed state represents a state '@tede by the data available at that time step.e Th
guantity in parentheses is the innovation, or tlifeerénce between the observatiod, and the
corresponding modeled staféy)/. Note that the filter does not require that theerved state and the
forecasted state be the same, only that they aearly related byM. The innovation is weighted by
the Kalman gain, which is computed using the follgpequation:

K=C'MT(MC'MT + C,)7*. (6)

In the above, the superscriptrepresents the transpose of the matrix. Theretbee innovation is
weighted according to the error covariance of tretlizted state¢’, and the observed statg,. For
small values of’; (very accurate measurements), the valug ¢énds toward unity, and the analyzed
state becomes equal to the observation. Altematdien the observations are noisy or inaccurate an
C, is large, the forecast will not be influenced bg tlata and will remain equal to the value foreshst
by the model. After the forecast has been updaiigd available data, the error covariance of the
analyzed state (the state that includes informdtmm both the model and the data) is updated by

ce = (I - KM)C, )

wherel is the identity matrix. This provides the quaatfite value of the uncertainty that remains in
the analyzed state estimate.

The Kalman filter requires that the physical stagedescribed by a linear model. Therefore, we
will assume that the values of and the exponent in Equations 3 and 4 will be constant with values
inferred from previous studies (e.g., Plant etl09,p=3; a, = 1). We make use of the fact that the
observable does not have to be the exact stateéesest to expand the analysis in vector form ab th

X\ X\ / Xy f\
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Here, our observable is the combined shorelinetipasthat would be measured with a discrete
morphological surveyX(t)). This observation is related to our four statesterest, which include
the separated short-term and long-term shorelirsitipos, long-term migration rate, and the model
parameterf. At each time step when data are available, thaaatities will be updated and then used
to forecast to the next time step. We also traekerror covariance of each of the corrected visab
which provides a measure of uncertainty in theaisi

S
S

IDEALIZED CASE STUDY

As an initial test, we implement the model-datairadation algorithm using an idealized case
study. This is designed to demonstrate an apicaif this approach and illustrate the abilitytbis
method to estimate multiple variables/parametemnfone related but separate observable. A 13-year
wave-height time series is constructed that coatagasonal variations in wave energy along with
some characteristic noise (Figure 1). Given timetseries, the "true" shoreline position is deieed
using Equation 4 withv,; = 0.6,p =3, a; =1, andfg = 1. The 'data’' to be used in the assimilation
process are then sub-sampled, annually, from this series of shoreline position, and normally
distributed noise is added to each yearly obsematiNote that this sub-sampling interval does not
resolve the seasonal, short-term shoreline modulati
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Figure 1. Synthetic wave-height time series used in shoreline-evolution model.

We then model the shoreline position by choosirmggiirect values for the model parameters and
later allow the values to be updated and estimhayethe assimilation process. Here, we initialize t
model with the following;; = 0 andg = 0. Hence, we assume there is no long-term costoof
shoreline evolution and that the short-term movenseuanrelated to the equilibrium position. Thah,
each time step in the model when data are avajlaldecompute the Kalman gain and allow the filter
to update the modeled shoreline position and, irtiquéar, the four specific quantities of interest
Ko, vieXse, B) -

The time history of the shoreline position and undiial quantities are given in Figure 2. Clearly,
the model, initialized with incorrect physical canehs, would have given an erroneous forecashef t
shoreline position. The Kalman filtering approatiowever, was able to converge on the correct
shoreline position within a two-year period. ThHtefing routine was also able to detect the logigrt
shoreline movement from the data and to deternfieettual long-term migration rate, despite thé fac
that it had been assumed to be zero at the begimithe simulation period. Likewise, both the gho
term shoreline position and the relation betweanwlave height and equilibrium shoreline position
were identified. The results indicate a decreasimegertainty with time when data are availablederk
the model on track. Once values converged tortleevalues, the levels of uncertainty also conwrge
to the minimum levels of uncertainty which corresgdo the error estimates provided to the Kalman
filter for the model and data.

SUMMARY

This paper represents the first steps toward deusd a forecasting system consisting of a
shoreline-evolution model that incorporates a raofjiong- and short-term processes and a Kalman
filter data assimilation scheme. Assuming that degninant physics are represented in the model
formulation, the predictor-corrector cycle of thealian filter will update modeled quantities,
including free parameters. It is expected th#tése quantities change with time (i.e., chanderty-
term migration rate), the filter will identify thishange, unlike typical linear-regression analydis
historical data. The case study included here shaive ability to estimate four model quantitieghwi
the assimilation of only one variable, which itsetis not one of the quantities being estimatede Th
algorithm was able to separate short- and long-tprotesses despite our having initialized the
prediction with inaccurate model parameters. \Wggest that data assimilation is an under-utilized
tool in coastal/nearshore science and that it $em&l when forecasting morphological conditions,
especially over long timescales.
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Figure 2. Results from the model-data assimilation algorithm. (top) Total shoreline position
comparing "true" (blue) and modeled (red) results and data (asterisks) used in the assimilation
process. (middle-top) Long-term shoreline change r ate. (middle-bottom) Short-term shoreline
position. (bottom) Free model parameter ( B) relating instantaneous wave height to an equilibr ~ ium
shoreline position.
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