

Refined hydrodynamic modelling of the **Gironde estuary, France**

N. Huybrechts^(a), L.A. VAN^(a), J.-M. Hervouet^(a,b), C. Villaret^(a,b)

(a) Laboratory for Hydraulics Saint-Venant (Université Paris Est, EDF R&D – CETMEF – ENPC), F-78401 Chatou ^(b) Laboratoire National d'Hydraulique et Environnement (EDF R&D/LNHE), F-78401 Chatou

CONTEXT

o Biggest estuary in western Europe: many human, biologic and economic activities.

o Accurate hydrodynamics is required for transport of sediment, algae or pollutant and also for flood control purpose.

1

0.2

-0.2

2.5 3.0 3.5 4.0 4.5

o Objective: tend to a fully predictive model.

- ✓ Measured water level as boundary => tide prediction.
- ✓ Calibration of the friction coefficient => roughness prediction.

MODEL SET-UP

- o Unstructured grid of 22720 nodes.
- o Hydrodynamic solved by Telemac 2d (Hervouet 2007).
- o Bathymetry: central part measured in 2005, elsewhere in 1995.
- o Flow rates from tributaries.
- o Harmonic constants from tide models on the boundary nodes (EDF LNHE, SHOM and LEGOS).

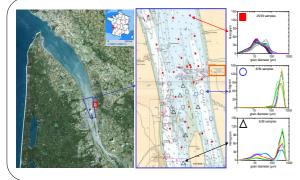
o Available measurements: bed material, water levels and velocities.

SENSITIVITY TO TIDE PREDICTION

o Tide predicted by:

$$h_{nide} = h_0 + \sum H_n f_n \cos [\sigma_n t - g_n + V_n + u_n]$$

o h₀ averaged level, s_n harmonic angular speed.

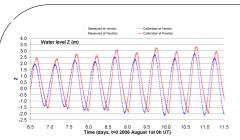

- o Harmonic constants (H_n g_n) given by tide models:
 - ✓ EDF LNHE: 4 harmonics M2, N2,S2 M4.
 - ✓ SHOM: 21 harmonics.
 - ✓ LEGOS: 44 harmonics.

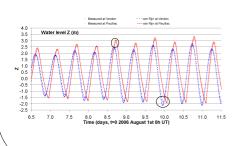
o Nodal factors f_n, u_n and initial phase V_n (Schureman 1958)

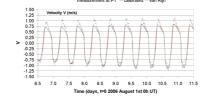
=> model comparison with 4 harmonics.

- => influence of harmonic number with LEGOS model
- (4,10, 20 and 44 waves).

FRICTION COEFFICIENT


o Calibrated: values of the Strickler coefficient in 4 zones, K=37.5 m^{1/3}/s in the mouth, 60 in the central part, 75 m^{1/3}/s from rivers junction to Bordeaux, $60m^{1/3}/s$ in the tributaries.


Tim


o Predicted by van Rijn (2007): decomposition of the roughness (grains, ripples and dunes). Friction coefficient depending on the flow velocity, water depth and median diameter of the bed material $(d_{50}).$

o Mouth d₅₀= 0.31 mm (GPMB), central part d₅₀=0.03 mm (measurement campaign 2009).

o Calibrated in regard of water level measurements in 2006 (spring and neap): dZ<10~15cm.

o Water level calibration checked on measurements from 1999 and 2009.

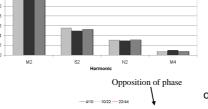
o Comparisons with flow velocity measurements in 2006 and 2009.

o Velocity under-estimated: friction coefficient probably compensates inaccuracies (numerical, tide models ..).

o Feasibility of using van Rijn formula (dZ~20 cm).

o Friction coefficient predicted by van Rijn close to calibrated values.

CONCLUSIONS AND FUTURE WORK


- o Robust calibration and tide description.
- o Better decription of the bathymetry.
- o Finer description of the bed material distribution.
- o Results quality strongly linked to accuracy of tide prediction.
- o Needing a robust tide model near the estuary mouth (=> new tide model).

o Coupling with sediment transport module (Sisyphe).

ACKNOWLEDGMENTS

« Grand Port Maritime de Bordeaux » (GPMB) and Service Hydrographique et d'Océanographique de la Marine » (SHOM) for data access

o F. Lvard from « Laboratoire d'Etude en Geophysique et Océanographie Spatiales » (LEGOS) for his support on tide modeling

5.5

1st 0h UT)

(days t=0 2006 August

7.0 7.5

EFDELINHE SHOM ELEGOS

o Comparison between harmonic spectra given by tide models.

 \Rightarrow Difference of water level at Verdon ranging from 10 to 25 cm.

 \Rightarrow Influence on the calibration of the friction coefficient.

- o Influence of harmonic numbers:
 - \Rightarrow from 4 to 10 waves: 25 cm.
 - \Rightarrow from 10 to 20 waves: 10 cm.
 - \Rightarrow from 20 to 44 waves: 2-3 cm.

o Tide model from LEGOS is selected.