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REGULAR PERIODIC WAVES RUNUP AND OVERTOPPING SIMULA TIONS BY 
LAGRANGIAN BLOCKS 

Lai-Wai Tan1 and Vincent H. Chu2 

Wave runup and overtopping of truncated beaches have been simulated using the method of Lagrangian Block 
Hydrodynamics (LBH). Instead of interpolation, which causes numerical oscillations, the fluxes through the face of 
the finite-volume in the LBH method are determined by the advection of the blocks. Negative water depth is not 
possible and the computation is unconditionally stable as the momentum is updated by the re-construction of the 
blocks. The accuracy of the method is evaluated using (i) the exact solution of the collapsing bore and (ii) the 
available laboratory data of the solitary waves as the benchmarks. The numerical simulations carried out for regular 
periodic waves cover a wide range of wave steepness and beach slopes taking advantage of the inherent shock-
capturing and shoreline-tracking capabilities of the LBH method.  

Keywords: Lagrangian block hydrodynamics; regular periodic waves; wave runup; wave overtopping; shock capture; 
shoreline tracking 

INTRODUCTION  
Design of the coastal defense structures would depend on simulation if reliable numerical method 

could be employed to compute the wave impact on the structures. Structural porosity, roughness and 
other effects could be readily determined by numerical computations for optimal design of the 
structures. The numerical challenges have been in the capturing of the breaking-wave and the tracking 
of the moving shoreline where the water meets the dry land. Computations will collapse as a 
consequence of numerical instability when the depth of water becomes negative at the shoreline. The 
artificial numerical oscillations have to be managed for long-term computational stability in a 
simulation using the classical finite-volume method (Kobayashi & Wurjanto 1989, Dodd 1998, Titov & 
Synolakis 1995, Li & Raichlen 2002, Lynett & Liu 2002, Briganti & Dodd 2009). Total control of the 
numerical oscillations is not generally feasible within the framework of the classical method. 

In the Lagrangian Block Hydrodynamics (LBH) method developed by Tan & Chu (2009a,b, 
2010a-c), the mass and momentum are transferred by the Lagrangian advection of the blocks. The 
computational stability of the LBH method is absolute because the spurious numerical oscillations 
associated with the classical Eulerian method of the fluxes are avoided. The blocks capture depth and 
velocity discontinuities accurately. Negative water depth is not possible and the computation is 
unconditionally stable as the momentum is updated by the re-construction of the blocks. In this paper, 
the accuracy of the method is determined by the wave runup and overtopping problems that have either 
exact solutions or reliable experimental data. The first series of simulations were conducted for the 
collapsing bore. The results are compared with the exact solutions of Shen & Meyer (1963) and 
Peregrine & Williams (2001). The second series of simulations were carried out for runup of the 
solitary waves. The simulation results are verified by the available laboratory experimental data. Taking 
advantage of the shock-capturing and shoreline-tracking capabilities of the LBH method, the runup and 
overtopping simulations of the periodic waves are carried out as an application. The simulations of the 
periodic waves covered a wide range of wave steepness and beach slopes. The results are compared 
with the formulae for the regular waves that are recommended for the design of the coastal defense 
structures. 

 

LAGRANGIAN BLOCK HYDRODYNAMICS 
The Lagrangian blocks are arrays of contiguous fluid elements which are numerically constructed 

to satisfy the mass and momentum conservations. Figure 1(a) shows the Eulerian mesh and the nodes 
where the water depth h(i,j), and the velocities u(i,j) and v(i,j) are defined. Figure 1(b) shows the 
advection of the volume block and Figures 1(c-d) show the advection of the momentum blocks. The 
mass and the momentum are carried by separate systems of the blocks. The numerical computation 
consists of two steps: (i) Lagrangian advection of the blocks and (ii) re-construction of the blocks as 
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mass and momentum are re-distributed back onto the Eulerian mesh in every time increment. The re-
construction algorithm assumes advection of the block only to its neighboring cells. Therefore, the 
computational time step must not be too large to cause advection beyond its neighbors. A numerical 
solution is possible as long as the minimum of the two Courant numbers Cox = u∆t/∆x and Coy = v∆t/∆y 
is less than the value of unity. 
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Figure 1. (a) The staggered grid showing the depth and velocity nodes, (b)-(d) block denoted by the so lid 
rectangle at the beginning of the Lagrangian advect ion when time = t, and the block denoted by the dashed 
rectangle at the end of the advection time incremen t when time = t + ∆∆∆∆t. 

  
A block of fluid is defined by its depth hL(i,j), and widths xL(i,j−1) − xL(i,j) = ∆xL and yL(i,j) − 

yL(i,j−1) = ∆yL. At the beginning of the computation time step t, the Lagrangian blocks fit the Eulerian 
mesh, that is xL(i,j) = x(i,j) and yL(i,j) = y(i,j). At the end of the time step t + ∆t, for volume 
conservation: ∆xL∆yLhL(i,j) = ∆x∆yh(i,j). In the present simulation, the forces on the blocks are 
calculated assuming hydrostatic pressure variation over the depth. The edge positions of the blocks 
xL(i,j) and yL(i,j) at time t + ∆t are calculated by integrating the momentum equations: 
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  where (ui,j , vi,j ) = velocity, (Sox , Soy) = bottom slope, Sfx  = cf ui,j|ui,j|/(2ghavg) and Sfy  = cf vi,j|vi,j|/(2ghavg) 
are x-component and y-component of the friction slope, respectively. To avoid entanglement of 
Lagrangian paths between adjacent blocks, the mass blocks are re-constructed at each time step. The 
mass and momentum are perfectly conserved through the process of re-distribution and the re-
construction of the blocks. The most significant advantage of this LBH method is its computational 
stability. The method ensures positive water depth and has not produced any numerical oscillation. 
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LBH simulations have been conducted for various problems. Grid refinement studies were carried out 
for a number of problems by Tan & Chu (2009a,b, 2010a-c) to show the convergence of the LBH 
simulations to the exact solutions. These include the dam-break waves on flat beds of Ritter (1892), 
Stoker (1957) & Hogg (2006), the dam-break waves on a steep slope of Ancey et al. (2008), and the 
solution of Thacker (1981) for the wetting-and-drying of water in a parabolic bowl. 

COLLAPSING BORE - RUNUP 
The runup and overtopping simulations by LBH method are first carried out for the collapsing bore. 

The collapsing bore has an exact solution due to Shen & Meyer (1963) and it has been widely studied 
as an idealized model of the processes in the surf zone. Figure 2(a) delineates the model. The bore is 
initially a sharp front of water on the beach of slope angle θ with the horizontal. The velocity uo and 
depth ho of the bore are initially constant behind the front. The collapse of the bore causes the water in 
the bore to run up the slope. Subsequently, the water down washes the slope upon reaching the 
maximum runup height Rmax. The very tip of the water on the slope is the shoreline. The advancing and 
receding shoreline on the slope is one of the most challenging numerical problems when the classical 
finite-volume methods are employed to solve it. The water depth vanishes to zero at the shoreline. 
Spurious numerical oscillations can lead to negative water depth and subsequent breakdown of the 
numerical simulation. However, these classical numerical oscillation problems are completely 
eliminated when the LBH method are employed for the runup and overtopping simulations. 
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Figure 2. (a) Collapsing bore of Shen & Meyer (1963)  with initial velocity uo and initial depth ho on a slope of 
angle θθθθ, (b) collapsing bore overtopping a levee of berm h eight B above its point of initiation. 

 
Three collapsing bores with the same initial water depth ho = 0.6 m but different initial velocity uo 

and beach slope So are computed using the LBH method. The comparison of the computation results 
obtained using ∆x = 0.001 m with the exact solutions is shown in Figs. 3 and 4. Table 1 summarizes the 
initial conditions and the simulation results that are obtained by extrapolation to zero block size. 

 
 

Table 1. Maximum runup height ( Rmax)∆∆∆∆x→→→→0 and maximum overtopping volume 
(V*OTmax)∆∆∆∆x→→→→0 for the collapsing bores with the initial water de pth ho = 0.6 m 

Slope So Initial velocity 
ut=0 

Maximum runup height 
(Rmax)∆x→0 (m) 

Maximum Overtopping 
volume (V*

OTmax)∆x→0 
1v:1h 0 0.880 0.151 
1v:2h 0 0.985 0.169 
1v:1h (gho)

1/2 2.07 0.165 

 
The exact solutions for the depth and velocity of the collapsing bore as given by Shen & Meyer (1963) 
and Peregrine & Williams (2001) are: 
 

 ( )2

29

1 **
s*

* xx
t

h −=  (3)     

 











 −
=+

*

*
s

*
**

t

xx
tu

3

2
 (4) 



 
 
4 

The dimensionless variables in these exact solutions are h* = 2h cosθ/Rmax, x
* = 2x sinθ/Rmax, xs

* = 2t* − 
t*2/2, t* = t sinθ (2g/Rmax )½ and u* = u sinθ (2/gRmax )½, which are based on the normalization by the 
maximum runup height Rmax. The dimensionless position of the shoreline is xs

*. 
The position of the shoreline is a parabola according to the exact solution given by Eqs. 3 and 4. 

The water rises to the top of the parabola at the maximum height Rmax and then falls back 
symmetrically. At the maximum height, x* = 2x sinθ/Rmax = 2. The LBH simulation data of the three 
collapsing bores denoted by the circle, triangular and cross symbols all follow very closely the exact 
solution of the parabola as shown in Fig. 3. The depth and velocity of the collapsing bore profiles, if 
normalized by the initial depth ho and initial velocity uo, would be time dependent as shown in Fig. 
4(a,b). The different profiles at different times collapse onto one depth and one velocity profiles as 
shown in Fig. 4(c,d) when the results are presented in terms of the swash coordinates, namely (i) when 
the length scale of the normalization is the maximum runup height Rmax and (ii) when the coordinates 
are measured relative to the position of the shoreline xs

*.  
The LBH simulation results in Fig. 3 and Fig. 4(c,d) are obtained using the small block size of ∆x = 

0.001 m. Improvement of the results are obtained by the refinement of the block size and then by the 
extrapolation of the results as block size ∆x approaches zero. Figure 5 shows the convergence towards 
the solution (Rmax)∆x→0 as the block size ∆x→0. The convergence toward the exact solution is slow in 
this case when the bed friction is ignored in the simulation. The frictionless shoreline of the collapsing 
bore is a rather difficult numerical problem because the depth of the front vanishes to zero following the 
quadratic relation Eq. 3. However, as it will be demonstrated later, much faster rate of convergence can 
be obtained in other runup problems when the bed friction is included in the simulation of the shoreline.  
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Figure 3. Shoreline trajectory for three collapsing bores: uo = 0, So= 1v:1h (circle), uo = 0, So = 1v:2h 
(triangle), and uo = (gho)1/2, So = 1v:1h (cross). The exact solution of Shen & Meye r (1963) is the solid line. 
Initial bore height is ho = 0.6 m and mesh size is ∆∆∆∆x = 0.001 m. 

 
Table 1 summarizes the extrapolations result from the grid refinement. The maximum runup height 

is (Rmax)∆x→0 = 0.880 m and 0.985 m for the cases of zero initial velocity uo = 0 and beach slope So = 
1v:1h and 1v:2h, respectively, and is as high as (Rmax)∆x→0 = 2.07 m when the bore is projected upward 
with a non-zero initial velocity uo = (gho)

1/2. The simulation results are independent of the initial 
conditions uo and ho only when the results are expressed in terms of the swash coordinates. It should be 
noted that Eqs. 3 and 4 is a special solution of the problem that does not depend on the conditions at the 
seaward side of the waves. In particular, it does not provide any information regarding the maximum 
runup height Rmax. 
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Figure 4. (a,b) Profiles of a collapsing bore on a 1 v:1h slope over a period of time from t = 0.2 s to 0.8 s. 
Depth and velocity profiles normalized using the in itial water depth ho as the length scale, (c,d) depth and 
velocity profiles normalized by the maximum runup h eight Rmax. 
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Figure 5. Error reduction with block size that show s the convergence of the maximum runup height towar d 
the true solution ( Rmax)∆∆∆∆x→→→→0. 

  

COLLAPSING BORE - OVERTOPPING  
Peregrine & Williams (2001) have utilized a truncated solution of Eqs. 3 and 4 to find the 

following analytical solution for the volume of water overtopping the levee when the berm height of the 
levee B is lower than the maximum runup height Rmax as shown in Fig. 2b:  
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where V*

OT = 2VOT sin 2θ /R2
max and B* = 2B/Rmax. According to this truncated solution, the maximum 

overtopping volume V*
OTmax = 0.15 occurs when the berm height B* is zero, that is when the crest of the 

levee is at the same height as the point of initiation of the collapsing bore.  
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Figure 6 compares the truncated solution Eq. 5 with the LBH computation results. Table 1 
summarizes the maximum overtopping volume which are (V*

OTmax)∆x→0 = 0.151, 0.169 and 0.165 
obtained for the three collapsing bores. These results as shown in the figure and summarized in the table 
are extrapolation for ∆x→0 from the grid refinement data. The agreement of the LBH computations 
with Eq. 5 is good but not perfect. The computation for the overtopping volume should be to some 
extent dependent on the boundary condition at the truncated end of the beach. In the present 
computation, the elevation of the water surface beyond the truncated beach is assumed to be one ho 
below the point of initiation point (see Fig. 1). The consequence of this assumption is that a huge 
unrealistic pressure gradient being artificially imposed at the line of truncation. Despite of this 
unrealistic condition, the overtopping volume is realistically determined in the sense that the simulated 
results of (V*

OTmax)∆x→0 = 0.151, 0.169 and 0.165 are very close to the theoretical value of V*
OTmax = 

0.15 obtained by Peregrine & Williams (2001).  
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Figure 6. Overtopping volume V*OT versus berm height B*. The line is the analytical solution of Peregrine  & 
Williams (2001). Initial bore height is ho = 0.6 m. 

 

SOLITARY-WAVE RUNUP 
The second series of runup and overtopping simulations is conducted for the solitary waves on 

plane beach with bed-friction. Many experiments for the runup of the solitary waves on smooth plane 
beach have been conducted in the laboratory. The vast amount of laboratory data available is used to 
validate the runup simulations by the LBH method. In the present simulation of the solitary waves, the 
friction coefficient of the hydrodynamically smooth surface is calculated using a formula given in a 
previous paper by Tan & Chu (2009a). The initial location of the solitary waves is located in a position 
as described in Synolakis (1986) and in Tan & Chu (2010a). Typical simulated runup depth and 
velocity profiles were presented in the previous paper. However, a much more comprehensive series of 
LBH simulations of the solitary waves has been completed recently. Only the results obtained for the 
maximum runup height Rmax are presented in this paper.  

Figure 7 compared the simulated maximum runup height with six series of laboratory data. The 
beach slopes So for the six laboratory experiments are (a) So = 1v:5.375h (Jensen et al. 2003), (b) So = 
1v:5.67h (Hall & Watts 1953), (c) So = 1v:15h (Li & Raichlen 2002), (d) So = 1v:19.85h (Synolakis 
1986), (e) So = 1v:30h (Briggs et al. 1995) and (f) So = 1v:60h (Hsiao et al. 2008). The LBH simulation 
data in the figure are calculated based on the extrapolation of the results obtained from the block 
refinement study. When friction is included in the simulation, the convergence of results to the true 
solution ∆x = 0 is very fast (see Tan & Chu 2010b). Therefore, the extrapolation results for zero block 
size ∆x = 0 as presented in Fig. 7 are highly reliable. In the figure, the maximum runup height is 
normalized by the undisturbed depth of water d, as most of the laboratory data were presented in this 
manner. The initial amplitude of the solitary waves a are selected in the simulation to be the same as the 
laboratory experiments. The LBH simulations for the maximum runup height Rmax have been conducted 
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with and without bed-friction. The results in the figure clearly show the effect of the friction on the 
runup height. The effect is most significant for waves of large wave steepness a/d on a milder slope. 
The example is the series of experiments by Hsiao et al. (2008), which was conducted on a 1v:60h 
slope in a very large 300-m long wave flume. The runup height is reduced by as much as a factor of 2 
when the bed friction is included in the simulation of Hsiao et al’s laboratory experiments.  

The validation of the simulation results using (i) the exact solutions of the collapsing bore and (ii) 
the laboratory data of the solitary waves as reported in the previous sections has given confidence to the 
LBH method. The computational stability clearly is an advantage of the LBH method over other 
numerical computation methods. Structural porosity, roughness, slope and other topographical 
variations can be readily included in the LBH numerical simulations to find the optimal design of the 
structures. 
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Figure 7. The maximum runup height Rmax  for solitary waves on six different slopes So = 1v:5.375h, 1v:5.67h, 
1v:15h, 1v:19.85h, 1v:30h and 1v:60h.  

PERIODIC-WAVE RUNUP AND OVERTOPPING  
The shoaling of the periodic-wave is by far the most difficult numerical problem. The overtopping 

of levee by the periodic waves has not been attempted in any previous numerical simulation. Therefore, 
the LBH simulations of the periodic waves are carried out here as a numerical challenge to demonstrate 
further application of the LBH method. In the simulation of the periodic waves, a wave maker is the 
periodic supply and removal of water from an array of cells at the seaward side of the computation 
domain. The LBH simulations are carried out for two wave heights Ho = 0.332 m and Ho = 0.064 m, 
shoaling on three different beach slopes So = 1v:1h, 1v:2h, and 1v:4h. The conditions of the simulations 
are summarized in Table 2.  

 
 

Table 2. Simulated maximum runup height ( Rmax)∆∆∆∆x→→→→0 and overtopping volume ( V*OT)∆∆∆∆x→→→→0 
for periodic waves of period To = 1 s and undisturbed depth d = 1 m 

Ho = 0.332 m Ho = 0.064 m Slope So 
(Rmax)∆x→0 (m) (V*

OT)∆x→0 (Rmax)∆x→0 (m) (V*
OT)∆x→0 

1v:1h 0.755 0.149 0.288 0.174 
1v:2h 0.386 0.155 0.270 0.162 
1v:4h 0.150 0.162 0.137 0.159 
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Figure 8. Surface elevation (left) and the correspon ding velocity (right) profiles of a periodic wave Ho = 0.064 
m runs up and downwashes on a beach of slope So = 1v:2h. 
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Figure 9. Surface elevation (left) and the correspon ding velocity (right) profiles of a periodic wave Ho = 0.332 
m runs up and downwashes on a beach of slope So = 1v:2h. 
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Two typical depth and velocity profiles on a 1v:2h beach slope obtained from the LBH simulations over 
a time period of one wave cycle are given in Figs. 8 and 9. Figure 8 shows the profiles of a relatively 
small amplitude wave of Ho = 0.064 m, and Figure 9, the profiles of a larger amplitude wave of Ho = 
0.332 m. The simulation of the periodic runup is a challenging numerical problem. Besides tracking the 
movement of water runup and downwash the beach slope, the computation scheme must be able to 
capture the wave breaking as the water on the slope downwash and collide with the incoming waves. 
The waves of the smaller amplitude on a steep slope do not break. On the other hand, breaking is a 
certainty in the waves of large amplitude on a mild slope. The swash event starts with a high velocity at 
the shoreline. This is followed by the runup of water on the slope which eventually reaches the 
maximum height Rmax. The velocity at the shoreline is zero when the runup of wave reaches the 
maximum. The downwash of water follows the maximum runup. The end of the cycle is the formation 
of a surge as the shoreward incoming wave meets the downward swash along the slope. As shoreline 
moves up and down along the beach, the LBH simulations of the waves are not interrupted by any 
computational instability. Taking advantage of the computational stability of the method, the 
computations are carried out to determine (i) the maximum runup height Rmax as shown in Fig. 10(a) 
and (ii) the overtopping volume when the berm height B is below the maximum runup height as shown 
in Fig. 10(b). Six simulations of the periodic waves are conducted for two wave heights Ho = 0.332 m 
and Ho = 0.064 m and three beach slopes So = 1v:1h, So = 1v:2h and So = 1v:4h. All waves has a wave 
period of To = 1 s and an undisturbed water depth at the toe of the beach d = 1 m. The wave length for 
all waves is Lo = (gd)1/2To = 3.13 m. 
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Figure 10. (a) Runup of periodic waves to a maximum  height of Rmax , (b) Periodic-wave overtopping a levee 
of berm height B. 

Shoreline Trajectory and Maximum Runup Height 
Figure 11 shows the shoreline trajectory for the series of six simulations of the periodic waves. The 

shoreline height R(t) moves up and down on the slope during the shoaling of the periodic waves into the 
shallower water. The rise and fall of the shoreline near the maximum runup follow closely to a 
parabolic trajectory. The downwash of the waves on the slope however is dependent on the wave height 
and the slope of the beach. In some cases, the shoreline may fall below the mean sea level (MSL) when 
the beach slope is sufficiently large. The maximum runup height Rmax for each simulation is determined 
from the shoreline trajectories shown in Fig. 11. The dimensionless shoreline height R/(Hoξo) is defined 
in term of the surf similarity parameter. Introduced by Battjes (1974), the surf similarity parameter is 
related to the slope angle θ, the wave height Ho and the initial wave length Lo as follows: 
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The period of the swash event in periodic waves is remarkably close to the one obtained for the 
collapsing bore. Therefore, the same dimensionless time t* = t sinθ (2g/Rmax )1/2 are used to present the 
simulation results in Fig. 11. The Coastal Engineering Manual (Walton et al. 1989) has recommended 
two formulae for the maximum runup height. One of the formulae due to Hunt (1959) is: 
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The simulated maximum runup heights of the periodic waves are all below the value recommended by 
the Hunt’s formula. It should be pointed out that the Hunt’s formula is for regular waves. The regular 
waves are random in phase and amplitude. The collision of events in the regular waves of same 
significant wave height and amplitude should produce greater runup than the periodic waves.  
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Figure 11. Shoreline trajectories for periodic waves  of height Ho = 0.332 m and Ho = 0.064 m on beach of 
slopes So = 1v:1h, 1v:2h, and 1v:4h using ∆∆∆∆x = 0.001 m.  

Periodic Waves and the Collapsing Bore 
The collapsing bore, and particularly the swash solution of Peregrine & Williams (2001), has been 

considered as a model of the processes in the surf zone. It is therefore interesting to see whether the 
periodic-wave simulation results may be related to the collapsing bore. Figure 12 shows the shoreline 
trajectory of the periodic waves normalized by the swash variables of the collapsing bore. If the time 
origin is defined by the intersection of the shoreline with MSL, the normalized shoreline trajectory 
would match closely the collapsing bore's parabolic profile defined by Eqs. 3 and 4. The initiation of 
the collapsing bore starts at time t* = 0. Therefore, the corresponding initiation time for the periodic 
waves is defined at a time when the shoreline meets the MSL. The time t* = t1, t2 and t3 are quarter, half 
and three quarter of one runup and downwash cycle. The parabolic shoreline trajectory fits well the data 
over the period close to the maximum runup. It does not always fit the data in other period of time 
particularly for waves of small amplitude. In the cases with steep slopes, the downwash is relatively 
strong and shoreline dives below the MSL some of the time as shown in Fig. 12. The time for the water 
on the beach to rise from MSL to the maximum runup height Rmax and back to the MSL is t*0→4 = t0→4 
sinθ (2g/Rmax )1/2 ≈ 4, which is approximately the same as the collapsing bore. 

Figure 13 compared the depth and velocity profiles of the periodic waves with the swash solution 
of the collapsing bore. The data are plotted using the swash variables of Peregrine & Williams (2001). 
The line identified as PW01 is the swash solution of Eqs. 3 and 4. The depth and velocity profiles data 
for time t = t1, t2 and t3 are all greater than the swash solution PW01. The periodic waves have 
produced a much stronger swash event that is entirely different from the swash event of the collapsing 
bore. It is clear from Fig. 13 that the profiles of the periodic waves are different. The incoming waves 
interact continuously with the downwash of water. The interaction causes the waves to break. The 
breaking wave is a prominent feature of the shoaling periodic waves. It is however a phenomena 
completely missing in the solution for the collapsing bore. 
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Figure 12. Shoreline trajectory for one wave period of the periodic wave plotted using the swash variab les. 
The triangle symbol denotes the simulated shoreline  trajectory of the periodic wave and the solid line  is Eqs. 
3 and 4 for the collapsing bore. 
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Figure 13. Depth and velocity profiles of two perio dic waves expressed in terms of the swash variables ; (a-b) 
Ho = 0.332 m, and (c-d) Ho = 0.064 m in the surf zone at time t* = t1 (circle), t2 (diamond) and t3 (rectangle). The 
collapsing-bore solution of Peregrine & Williams (20 01) is identified as PW01. 

Grid Refinement and Extrapolation for the Maximum R unup Height 
Accurate determination of the maximum runup height Rmax of the periodic waves is obtained from a 

series of block-refinement simulations. Figure 14 shows the convergence of the maximum runup height 
towards the value corresponding to zero block size (Rmax)∆x→0. The rate of convergence is rapid in these 
simulations of the shoreline. Table 3 summarizes the extrapolation values (Rmax)∆x→0 for the periodic 
waves and the comparisons with the two formulae recommended by the Coastal Engineering Manual 
(Walton et al. 1989). Figure 15 correlates the dimensionless runup height (Rmax)∆x→0/Ho with the surf 
similarity parameter So(Ho/Lo)

−1/2. The formulae of van der Meer (2002) for regular waves are included 
in the figure for comparison. The Hunt’s (1959) formula is recommended when So(Ho/Lo)

−1/2 < 2. The 
LBH simulation follows the trend of the van der Meer’s formula. However, the maximum runup height 
of the periodic waves is expected to be below the regular (random) waves of the same significant wave 
height and wave period. The collision of the random events of the regular waves can briefly lead to 
much greater wave height than the significant wave height. 
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Figure 14. Convergence of the maximum runup height of periodic waves toward ( Rmax)∆∆∆∆x→→→→0 for (a) Ho = 0.332 
m, and (b) Ho = 0.064 m on slopes of So = 1v:1h (circle), 1v:2h (triangle), and 1v:4h (cro ss). 

 
 

Table 3. Maximum runup height of periodic waves com pared to Hunt’s formula and 
Miche & Keller’s formula 

( )
o

x

H

R 0max →∆  
Ho So (Rmax)∆x→0 (m) 

LBH Hunt (1959) Miche (1951) & 
Keller (1961) 

0.332 1v:1h 0.755 1.416 3.071 2.806 
0.332 1v:2h 0.386 0.828 1.536 3.337 
0.332 1v:4h 0.150 0.331 0.768 3.969 
0.064 1v:1h 0.288 2.828 6.976 2.806 
0.064 1v:2h 0.270 2.804 3.488 3.337 
0.064 1v:4h 0.137 1.438 1.744 3.969 
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Figure 15. Correlation of the maximum periodic-wave  runup ( Rmax)∆∆∆∆x→→→→0 and comparison with the van der 
Meer (2002) and Hunt (1959) formulae. 

Periodic Wave Overtopping over Truncated Beach 
Water would intermittently flow over the levee if the berm height of the levee B is lower than the 

maximum runup height Rmax. The shoaling of the periodic waves causes the water to run up the slope on 
the front face of the levee, flow overtop the levee and then retreats below the berm. Figure 16 shows the 
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intermittent flow over the levee for the two waves (a) Ho = 0.332 m and (b) Ho = 0.064 m on the slope 
So = 1v:2h. The dimensionless flow rate over the levee q* = q cosθ /[g(Rmax/2)3]1/2 depends on the berm 
height B above the mean sea level. The overflow is zero in the limit when the dimensionless berm 
height B* = 2B/Rmax = 2. The volume of the overtopped water per wave VOT is determined by time 
integration of the flow rate over the period of one wave. The dimensionless overtopping volume per 
wave for the periodic waves V*

OT = 2VOT sin 2θ /R2
max is compared with the collapsing-bore solution 

Eq. 5 of Peregrine & Williams (2001) and experiment data of Baldock et al. (2005) in Fig. 17. The 
LBH simulation results give much larger overtopping volume then the swash solution of the collapsing 
bore. They are however consistent in trend and in the same range as the laboratory data of Baldock et 
al. (2005). Figure 18 is the correlation of the overtopping volume of the periodic waves with the wave 
height Ho and wave length Lo. The maximum runup height is not required to find the overtopping 
volume from this direct correlation shown in Fig. 18. 
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Figure 16. The intermittent overtopping discharge q*(t*) produced by the periodic waves; (a) Ho = 0.332 m, So 
= 1v:2h, and (b) Ho = 0.064 m, So = 1v:2h for three berm heights B* = 2B/Rmax  = 0, 0.4 and 0.8. 

 
 

(a) Ho = 0.332 m, d = 1 m, T = 1 s (b) Ho = 0.064 m, d = 1 m, T = 1 s
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Figure 17. Overtopping volume per wave of two perio dic waves (a) Ho = 0.332 m and (b) Ho = 0.064 m on 
slopes So = 1v:1h (circle), 1v:2h (triangle), and 1v:4h (cro ss). The formula of Peregrine & Williams (2001) for  
the collapsing bore is the thick solid line. The la boratory data of Baldock et al. (2005) for periodic  waves is 
denoted by solid rectangle. 



 
 
14 

0.0001

So = 1:10.001

0.01

0.1

So = 1:2
So = 1:4

So = 1:1
So = 1:2
So = 1:4

0 0.03 0.06 0.12
Ho /Lo

So = 1:1
So = 1:2
So = 1:4

0.09

So = 1:1
So = 1:2
So = 1:4

(a) 2B/Rmax = 0 (c) 2B/Rmax = 1.0

(b) 2B/Rmax = 0.6 (d) 2B/Rmax = 1.6

ooLH
VOT

0.0001

0.001

0.01

0.1

ooLH
VOT

0 0.03 0.06 0.12
Ho /Lo

0.09

 
 
Figure 18. Overtopping volume per wave of the two p eriodic waves Ho = 0.332 m and 0.064 m on slopes So = 
1v:1h (circle), 1v:2h (triangle), and 1v:4h (cross)  over berm of height (a) 2 B/Rmax = 0, (b) 2B/Rmax = 0.6, (c) 
2B/Rmax =1.0, and (d) 2 B/Rmax  = 1.6.  

CONCLUSION 
This paper takes the advantage of the shock-capturing and shoreline-tracking capabilities of the 

Lagrangian Block Hydrodynamics (LBH) method to study the periodic waves in the surf zone. The 
runup and overtopping computations are validated using (i) the exact solutions of Shen & Meyer (1963) 
and Peregrine & Williams (2001) and (ii) the vast amount of laboratory data available for the solitary 
waves. The results of the runup computations for the periodic waves follow the trend of the formulae 
recommended for regular (random) waves by the Coastal Engineering Manual (Walton et al. 1989) and 
the Flood Defense Technical Advisory Committee (van der Meer 2002).  The overtopping volumes 
determined by LBH simulations for the periodic waves fall within the same range as the experimental 
data of Baldock et al. (2005). The present numerical simulations are the necessary step to take before 
the ultimate recommendation of the LBH method for coastal engineering design. The inclusion of the 
sediment suspension and deposition effects in the LBH simulations would be a natural and 
straightforward extension. 
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