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BASIC DESIGN OF THE PARS PETROCHEMICAL PORT BREAKWATERS WITHIN A REGION OF 
DEEP WATER AND HIGH SEISMIC ACTIVITY  

Babak Banijamali1 and Morteza Banijamali2,  

This article addresses certain notable breakwater design aspects for the rare case of the Pars Petrochemical Port, where fairly 
slender rubble-mound breakwaters are located in water depths exceeding 32 meters within a seismically active zone. Due to the 
cryogenic cargo pipe-racks being placed atop breakwater crests, the design process has had to be concerned with seismic risks 
where the stability and deformations of breakwaters during earthquakes are important enough to govern the overall design as well 
as the more conventional hydraulic and geotechnical considerations. Moreover, some construction related issues pertinent to this 
fast-track project and the use of dredged material in the breakwater core are also discussed.  
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INTRODUCTION 
The recently constructed Pars Petrochemical Port is situated in the Assalueh region of the Iranian province 

of Bushehr, as shown in Fig. 1. The port will serve the export of petrochemical products derived from the vast 
Pars offshore gas field which contains the largest world reserves of its kind. The port owner is the National 
Petrochemical Company (NPC) of Iran as the second largest exporter of petrochemicals in the Middle-East 
region. DBC has been responsible for all basic designs and international tender documents preparations as well 
as subsequent tender evaluations, detailed designs review and construction supervision tasks.  

In order to construct the port facilities, interesting planning, design, engineering challenges and geological 
conditions had to be overcome. These challenges rarely, if ever, have all had to be recognized, investigated, 
resolved, planned, designed and constructed for simultaneously in a single project, including the following: 
• Due to the landlocked topography of the coastal region, particularly the presence of the nearby Zagros 

mountain range, only a narrow strip of usable land remained for development. The main (western) and lee 
(eastern) breakwaters had to be constructed seaward of the petrochemical plants, construction of which had 
previously been accomplished on reclaimed land. As a result, the breakwaters were located for the most 
parts in water depths much greater than those previously attempted to construct such structures in the 
Middle-East. As depicted in the bathymetry chart, Fig. 2, after an initial start in the water depth of 12 (m), 
due to the rather steep seabed slope, the main breakwater continues for most of its length in water depths of 
up to 33 (m) with respect to the Chart Datum of the project, defined at the Lowest Astronomical Tide level 
of the site.  

 
Figure 1. Location of the Pars Petrochemical Port at the Assalueh Region, a.k.a. Azaluyeh. 
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• Another characteristic feature of the project was the significant seismic activity in the area around the site. 

Although, breakwaters are often designed to withstand mainly waves and hydraulic related phenomena, in 
this project the location of pipelines on top of breakwater crests carrying liquid cryogenic cargo to the 
adjacent berths required that both the stability and deformation of the breakwaters after a major possible 
earthquake had to be analyzed because of the site being located very close to active fault-lines. In other 
words, the breakwaters for this project were not only mere wave attenuation structures but also they had to 
serve as industrial structures, where it was striven within budgetary constraints to minimize any required 
future maintenance and repair costs due to effects of both wave action as well as earthquakes.  
Furthermore, to facilitate the export of liquid cargo, 6 berths were designed adjacent to the main breakwater 

in water depths ranging from 14 to 30 (m), as well as 2 berths adjacent to the lee breakwater.  

BREAKWATER DESIGN  
Based on pertinent investigations and analyses, including: wave climate, soil survey, sediment transport, 

currents measurements & modeling (Fugro 2002), as well as a quantitative risk analysis (DNV 2002), the lay-
outs of the breakwaters were finalized as in Fig. 2. Notably, the breakwater lay-outs were selected to ensure 
harbour tranquility considering the dominant north-westerly sector of wave attack. 

Although, a wide range of alternative breakwater designs were investigated during the conceptional design 
stages, however, eventually a statically stable rubble-mound type of breakwater was selected. The choice of the 
rubble-mound alternative was influenced by criteria including the abundant existence of rock quarries –albeit, 
not always yielding rock of desirable quality-  in the vicinity of the project site, significant local experiences of 
Iranian contractors with this type of structure over the past four decades, longevity of rock in the highly 
corrosive environment of the Persian Gulf, less wave reflections inside the fairly narrow harbour basin from the 
inclined porous faces of the rubble-mound, and relatively less construction costs as well as duration of 
construction issues.  

HYDRAULIC DESIGN ASPECTS OF THE RUBBLE-MOUND STRUCTURE 
Based on the Extremal analysis of all data including hindcast results, available in-situ measurements, ship 

observations and altimetry wind and wave data, a design significant wave-height  of 5.2 (m) was determined. As 
the present paper does not focus on the hydraulic design aspects therefore further such detail is not provided. 

The typical breakwater cross-section drawings are provided as in Fig.s 3 to 5. Moreover, Table 1 
summarizes the stone mass values, as follows: 
 

Table 1. Final Stone Weight Specifications for Various Layers 

Layer Name: 
Antifer/Stone mass 

(Kg) 
Armour for most trunk sections (IV-a) 14,000 

Armour for curves & head sections (IV-c) 18,000 
Upper filter  (III) 1,000-3,000 

Upper berm (III-a) 2,000-4,000 
Lower filter (II) 200-1,000 

Lower berm (II-b) 100-500 
Core (I) Up to 200 

 
It deserves mention that the layer II-a, as shown in the drawings, was not really different from the core layer 

(I) but in this way the drawings point to a stricter requirement to enforce the design gradation during 
construction phase for the main wave action zones. This was necessary to avoid washing away of the fines which 
had escaped segregation at quarries and also to mitigate the effects of at times achieving in practice smaller 
median weights for the core layer by the contractor compared to what was specified in the contract. 

Using Hudson & related formulae, the concrete armour blocks were designed after taking into consideration 
theoretical & practical implications of using various types of slender, bulky and massive concrete armour blocks. 
Computations of wave run-up and overtopping were also performed to optimize the crest height considering the 
location of the piperack on breakwater crest.  

Owing to past international case-histories as well as DBC's own design experiences in Iran which have 
shown that some slender armour units such as Tetrapods may become subject to breakage either during or after 
placement, therefore it was opted to use Antifer blocks (Layer IV-a: each Antifer unit weighing 14.0 tons along 
the two straight segments of the trunk and layer IV-c: composed of 18.0 tons units along the bends and head 
sections) to avoid this problem in line with the recent international recurrence of interest in using simple massive 
units.  

Moreover, evolved bulky type units such as Accropode or Core-Loc units with high stability coefficient 
values were not considered due to a lack of a sufficient degree of local construction experience to justify their 
use, particularly in water depths exceeding 30 (m), as well as international licensing issues. Moreover, it was 
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feared that in case of rather poor construction the theoretical stability associated with these advanced units may 
not be achieved. Such a risk under the design wave was deemed unwarranted due to its drastic consequences 
requiring major repair operations and/or causing repair-related down-time and its resulting costs after the port 
has become operational. 

Initially, based on existing quarry reports from nearby rock quarries and design code recommendations, 
upper and lower filter layer gradation specifications (for the upper filter and upper berm layers III and III-a: rock 
in the range of 1 to 3 tons and for the lower filter and berm layers: stones from 100 kilograms to 1 ton were 
specified) were determined and seen to fulfill the relevant gradation criteria for adjacent layers and provide 
adequate filtering without any problems being observed during physical model tests (WL | Delft Hydraulics 
2002). However, during detailed design, to further mitigate risks it was accepted by client to change the III-a 
layer range to consist of 2 to 4 tons. Furthermore, layer II-b was defined by the 100 to 500 kilograms gradation at 
the final design stages to reduce the gradation range by the client in comparison to the case of using layer II 
instead of II-b. The core layer gradation was set with the constraints of minimizing quarry waste, costs and any 
wave transmission to inside the harbour (Layer I: the stone range of 1 to 100 kilograms was initially chosen to 
fulfill all technical criteria, however the gradation upper-limit was extended to 200 kilograms solely because of 
quarries yield and construction preferences during the detailed design stage).  

To validate the design, 2D & 3D (WL | Delft Hydraulics 2002) physical hydraulic model tests were utilized 
and armour layer & toe stability as well as wave run-up and over-topping were investigated for both 
perpendicular and oblique wave attack at the breakwater trunk and head sections. Even though, the physical 
modelling endeavors with the initial design all demonstrated sufficient structural stability, due to Client's 
preferences based on contractor's suggestions to still lower the risks, the upper range of the upper berm layer III-
a was increased from 3 to 4 tons.  

Regarding stone characteristics, using past local experiences of constructing rubble-mound breakwaters in 
warmer climates particularly that of the Persian Gulf – where freezing action is not present – technical 
specifications of the stone materials were finalized in line with requirements suggested by most design codes, 
however, allowing a relatively larger water absorption percentage which was shown to be viable from past local 
experiences existing in the region from decades ago. 

As stringent time requirements of the construction project implied that the substantial target daily stone 
placement rate of up to 15,000 (m3) was to be achieved and sustained for almost two years, a combination of 
land-based & sea-borne operations was decided upon. Therefore, all construction below the -5 (m) level was to 
be performed by suitable bottom/side-dumping barges as well as other sea-borne equipment such as floating 
cranes; and the remainder of the breakwater cross-section was constructed by land-based equipment. 

During the course of construction, desirable daily stone placement rates of 10,000 (m3) were quite often 
achieved and at times exceeded owing to a combination of factors such as suitable advance planning and the 
concerted land and sea-based efforts being aided by fairly calm seas.  

As a means of performing value engineering, upon obtaining acceptable results for the physical and 
chemical properties of the dredged spoils, made available from the Boskalis dredging campaign (these 
parameters were used to represent the dredged material in the pertinent stability and deformation analyses of the 
breakwaters), it was decided to replace up to a maximum of approximately 7 (m) of the lowest part of the core 
layer stone by dredged material to be situated as close as possible to the axis of the core layer and confined as 
much as possible by two small underwater dikes at both ends of the core layer (constructed a priori by using the 
bottom-dump split barge) to stop the loss of fine material and their spreading into the adjacent sea-side and lee-
side berm layers. However, such spreading was not a problem as both field current measurements and modelling 
results did not show a great potential for the movement of the spoils at depths exceeding 30 (m). Of course, to 
realistically and holistically implement a cost saving associated with the quarrying and transport operations of 
the core layer material and also to reduce the required construction time, important issues of reviewing quarry 
fragmentation curves –to ensure that there would indeed be an overall saving achievable and core material would 
not have to be produced anyway as a by-product just to yield enough filter type of rock sizes- were considered. 
Fortunately, as up to 15 separate quarries were used to supply the sufficient rock quantity for this project, with 
some being better suited to yield filter than core gradation rock sizes and vice-versa, therefore the proposed 
selective replacement of core material by dredged material, despite the associated discontinuity in the rock 
weights used during construction, did actually cause a considerable increase in the execution speed as well as 
resulting in cost savings not only in breakwater construction but also dredging operations, reducing also the 
maximum discharge distance for the dredging which otherwise would had to be released in water depths 
exceeding 40 (m) in line with the prevailing environmental constraints. 

Notable from a practical perspective is the fact that as the core layer started to progress faster using dredged 
spoils, it became crucial to speed up the execution of the underlayers and the armour layer to safeguard the 
economical and execution time related gains against the risk of seasonal storm waves damaging the unprotected 
cross-section during the construction period. 
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SEISMIC AND GEOTECHNICAL DESIGN ASPECTS 
Often, it is common practice to finalize the design of rubble-mound breakwaters taking into consideration 

solely hydraulic and geotechnical issues not having to take the issue of earthquake stability and related 
deformations of the rubble-mound into consideration, owing in part to the relatively high magnitudes of the 
related horizontal accelerations associated with water wave impact on these structures, which amount around the 
gravitational acceleration (CIRIA 2007). 

Although, it has already been documented (OCDI 2001) that seismic considerations particularly for the 
design of slender, deep-water breakwaters in regions with fairly mild waves and significant seismic activity 
constitute a clear case requiring special investigation and analysis, however, not many such design examples can 
apparently be readily found around the world. However, as the Pars Petrochemical Port breakwaters are located 
in a region of significant seismic activity (p.g.a. for L1 and L2 earthquake levels are: 0.23g and 0.42g, 
respectively), along with the fact that the export pipe-rack with stringent requirements on its maximum allowable 
vertical and horizontal displacements passes on top of breakwater crests, therefore it became even more 
important to investigate the breakwater stability and deformations during and after the occurrence of the design 
earthquake. 

Slope-Stability of the Rubble-Mound Breakwater 
Prior to delving into the description of the performed analysis and its results, it is necessary to discuss the 

length of return period as an issue related to adopting a coherent design philosophy. Because the return period 
for the design wave has been taken to be 100 years based on structure life-time and permitted level of risk, it 
may be reasonably argued from a statistical point of view that the same return period should be the coherent 
choice for the design earthquake. However, as the consequences of earthquakes can be much more drastic for the 
breakwater structure with the pipe-rack on its crest, as well as less reliable data being available for more 
infrequent earthquakes than waves, therefore, the client required that the L2 earthquake event with a return 
period of 475 years be taken as the design earthquake. Even though from a hydraulic point of view the 
breakwater was designed in a fairly conventional manner of taking a return period of 100 years for the design 
wave and using the traditional 5% damage hydraulic stability coefficient values associated with the armour units 
the earthquake associated risk was treated more conservatively. In fact, the requirement to check the L2 level 
earthquake for the breakwater as a Class (S) special industrial structure, as also advocated by OCDI 2001, does 
interestingly form somewhat of a contradiction at least from a statistical point of view when comparing to the 
usual practice of taking a return period of 100 years for the design wave. 

However, by decoupling to some extent the pipe-rack from the breakwater via the means of a pile-driven 
substructure, it is possible to define the breakwater as a Class (A) ordinary structure and only have to check its 
stability for the considerable L2 earthquake level while the deformations are still to be checked for the more 
improbable L1 event according to OCDI 2001 recommendations. 

Notably, a sensitivity analysis shows that the choice of the rock mechanical parameters, namely the internal 
angle of friction (φ) and the apparent cohesion (c') parameter values for the rubble material greatly influences the 
outcome of analysis for both slope stability and deformations. In the absence of tri-axial test results for large 
rock specimens under their actual loading conditions after construction, the design values recommended by 
existing design codes (OCDI 2001) (CIRIA 2007) are the only source of guidelines for parameter selection. 
Specifically, a φ of 35 degrees -provided the compressive strength exceeded 30 (MN/m2) and if not a reduced 
value of 30 degrees- and a c' of 10 to 20 (kN/m2), irrespective of the compressive strength, due to lateral 
confinement and interlocking in the rubble-mound is advocated in the above-mentioned revered design 
references.  

Even though, the stone specifications in the construction contract implied the possibility of taking the above-
mentioned parameter values at the high end, however, owing to the great sensitivity of the calculations to 
parameter values, importance of the project, possible deviations from rock quality specifications during 
execution, as well as client's preferences to further reduce risks, a somewhat more conservative selection basis 
for the parameter values than suggested in the above-mentioned references was adopted to finalize the design.  

During construction, a stone quality committee was set up with representatives from client, consultant and 
contractor and it was procedurized to ensure, by performing the relevant ASTM tests, that at least the following 
criteria are met during the construction: Actual dry specific gravity to exceed 2.25, water absorption below 7%, 
soundness test limit of 10%, compressive strength above 300 (kg/cm2), impact resistance threshold of 25%, and 
abrasion resistance (a.k.a. Los Angeles) test result for 500 revolutions to be less than 35%. 

It deserves mention that our search points to the scarcity of existing scientific material and therefore a clear 
need to perform additional theoretical and field work, perhaps on an international scale, to obtain what can be a 
more realistic representation of rock mechanical properties for rubble-mound breakwater structures than the 
present state of documented knowledge, based on limited results obtained from back-calculations related to 
previously damaged rubble structures in Japan (OCDI 2001), where in order to make the theoretical results more 
in line with the reality it was suggested to include a measure of apparent cohesion in the Mohr-Coulomb 
behavioral model when considering the property of rock in rubble-mounds.  
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Clearly, it is the lee-side of the breakwaters which is most vulnerable to slope instability represented by 
shallow slip circles rather than the sea-side face which is also better protected against waves. Therefore, solely 
an account of the sensitivity analysis performed for a range of parameter values pertaining to the lee side using 
the Slope/W limit equilibrium module of Geoslope software is provided as follows in this article.  

To account for the uncertainties, a Monte-Carlo analysis related to the factor of safety for approximately 
30,000 slip-circles was undertaken, varying in this process the φ values from 35 to 40 degrees, c' from 10 to 20 
(kN/m2) and the seismic coefficient being set ranging from a third to a half of the p.g.a. value, obtaining the 
results as summarized in table 2 below: 
 

Table 2. Slope Stability Results for the Lee-Side Face 

Lee-side slopes: Probability of Failure by: Probability of Failure by: 
Simplified Bishop method Morgenstern-Price method 

1:1.5 8% 6% 
1:1.7 5% 3% 
1:2.0 0.5% 0.2% 

 
As from a mathematical point of view, the Morgenstern-Price method, based on the balance of both inter-

slice forces and moments, is the most accurate of all existing limit-equilibrium relationships including the well-
used Simplified Bishop method, therefore, results based on the former are favoured here.  Eventually, although 
the initially suggested side-slopes of 1:1.5 were acceptable from a seismic failure probability point of view 
(specially for the sea-side face), however, to reduce risks further the client decided on the 1:1.7 slope for both 
breakwater sides, even though this would be relatively more conservative for the seaside face, as the initially 
proposed 1:1.5 slope already corresponded to less than 5% probability of failure.  

Rubble-Mound Deformations and Pipe-Rack Sub-Structure 
The objective here was to investigate the expected total combined vertical settlement due to rubble-mound 

itself and the soil underneath it, for the case of L2 earthquake event, considering the rubble-mound interaction 
with the piled pipe-rack substructure, and to compare this settlement value to the maximum allowable threshold 
set from cryogenic cargo piping considerations. 

The finite-element analysis of the rubble-mound breakwater under the design earthquake was performed 
utilizing the Plaxis software using the above-mentioned parameter values. Evidently, for the breakwater alone a 
maximum vertical displacement in the order of 30 (cm) was likely for the crest (with rubble-mound parameters 
set as in [OCDI 2001]). In greater depths, additional means were necessary to reduce vertical settlement during 
earthquakes. 

Based on the client's preference, a piled-foundation substructure for the pipe-rack was designed by driving 
steel piles in the core of breakwaters and further additionally to 10 (m) in the sea-bed to limit maximum 
allowable vertical settlements to less than 7 (cm). It has to be however mentioned that the associated horizontal 
displacements during earthquakes for this system were still quite large.   

As for the characteristics of the driven steel piles inside the breakwater core, these mostly consisted of piles 
with 42 inch diameters, wall thickness of 26 (mm) and X70 steel grade. As the project execution coincided with 
the height of international price appreciation for steel prior to the global recession, piles were chosen also on the 
basis of going for the cheapest available with a minimum lead time. Cathodic Protection was also foreseen in the 
critical splash zone for all berthing and the rack substructure.  

BERTHS ADJACENT TO BREAKWATERS 
Various types of gravity & piled structures were initially considered and compared from technical, 

construction and economical points of view to be selected for the 6 berths located adjacent to the main 
breakwater. 

A typical drawing is provided as in Fig. 8 for the eventually selected steel pipe piles and prefabricated 
concrete deck berthing structure, even though a concrete block-type gravity structure could also fulfill the 
required structural criteria. It deserves mention that instead of the dolphin pile configuration, large diameter 
monopiles were preferred for some of the berths, as depicted in Fig. 8. 

CONCLUSIONS 
Breakwaters of the Pars Petrochemical Port, are the deepest such structures in the Persian Gulf and the 

region, having posed interesting concurrent challenges related to hydraulic, geotechnical and seismic aspects. 
From a construction point of view, using solely the capabilities of local marine contractors in Iran to construct 
such grand breakwaters and performing value engineering during construction were some of the other challenges 
faced on a new regional scale in this project. 

In particular, this article reported the useful know-how generated regarding the design of fairly slender 
breakwaters located in earthquake-prone deep-water regions, pointing also to the need for further international 
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research in formulating rock mechanical properties to facilitate less idealized analysis of rubble-mound 
breakwaters under similar conditions. 
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Figure 2. Lay-out of Breakwaters of the Pars Petrochemical Port 
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Figure 3. Typical Trunk Cross-Section Drawing of the Main Breakwater 
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Figure 4. Typical Head Cross-Section Drawing of the Main Breakwater 
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Figure 5. Typical Crest Cross-Section Drawing of the Main Breakwater 

 
Figure 6. Limit Equilibrium Based Slope Stability of the Main Breakwater 
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Figure 7. Breakwater and Pipe-Rack Substructure Deformations after the Design Earthquake 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Typical Cross-Section Drawing of the Berths adjacent to the Lee Breakwater 
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Figure 9. Head Section of the Lee Breakwater under construction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Piperack atop breakwater crest under construction. 
 


