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INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR 
REGIONAL FREQUENCY ANALYSIS OF PEAKS-OVER-THRESHOLD WAVE HEIGHTS 

Yoshimi Goda1, Masanobu Kudaka1, and Hiroyasu Kawai2 

The L-moments of the Weibull distribution are derived and incorporated in the regional frequency analysis of peaks-
over-threshold significant wave heights at eleven stations along the eastern coast of Japan Sea. The effective duration 
of wave measurements varies from 18.0 to 37.2 years with the mean rate of 10.4 to 15.1 events per year. The eleven 
stations are divided into three regions to assure homogeneity of the data. Both the Weibull and Generalized Pareto 
(GPA) distributions fit well to the observed data. The 100-year wave height varied from 8.2 to 11.2 m by the Weibull 
and 7.6 to 10.3 m by the GPA. The GPA distribution is not recommended for determination of design waves for these 
stations because it has an inherent upper limit and a tendency of under-prediction. 

Keywords: extreme wave analysis, distribution function, Weibull distribution, GPA distribution, L-moments, regional 
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INTRODUCTION  

Extreme wave analysis is the first step in coastal structure design by providing the basis of 
selecting design wave heights. A variety of methodology has been proposed for extreme analysis of 
environmental data such as flood discharge, storm wind speed, storm wave height, etc. An extreme 
data set is prepared by either the annual maximum (AM) data or the partial duration series data. The 
latter is also called the peaks-over-threshold (POT) data, because a peak value per storm over a preset 
threshold is employed to constitute the extreme data set.  

 There are many methods for distribution fitting to the data set such as the method of moments, 
probability-weighted moment method, least squares method, maximum likelihood method, L-moments 
method, etc., among which the L-moments method is the newest one proposed by Hosking (1990). It 
was developed from the probability-weighted moment method by Greenwood et al. (1978) and has the 
merits of easy application and straightforward estimation of distribution parameters. The FORTRAN 
program “lmoments” by Hosking can be downloaded at http://lib.stat.cmu.edu.  

 Hosking and Wallis (1997) have promoted the methodology of regional frequency analysis using 
the L-moments method for estimation of some common distributions to be fitted to multiple data sets 
within a homogeneous region. Application of regional frequency analysis to extreme waves has been 
reported by van Gelder et al. (2000) and Ma et al. (2008). Van Gelder et al. analyzed the wave data at 
nine stations off the Dutch coast, while Ma et al. examined the buoy data of the National Data Buoy 
Center at seven stations off the California coast of U.S.A. Waves off the Dutch coast were fitted with 
the Generalized Pareto (GPA) distribution, while waves off the California coast was fitted with the 
Pearson type III distribution. 

 Both studies did not include the Weibull distribution because Hosking (1990) did not derive the 
L-moments of the Weibull distribution and the formulas for parameter estimation. However, the 
Weibull is one of the most favored distributions in coastal and ocean engineering since Petruaskas and 
Aagaard (1971) have worked out the unbiased plotting position formulas. A number of extreme wave 
data sets have been fitted to the Weibull distribution. Its omission from the candidate distributions 
certainly causes discontinuity in the practice of extreme wave analysis. To prevent such discontinuity, 
derivation of the L-moments of Weibull distribution is made and the regional frequency analysis of 
extreme waves at the Japan Sea coast with large data sets is described in the present paper. 

 
L-MOMENTS OF WEIBULL DISTRIBUTION AND PARAMETER ESTIMATE 

The following functional form is given for the Weibull distribution to be employed in the present 
paper: 

F(x) = 1 – exp[–{(x – B)/A}k,        B ≤ x < ∞     (1) 

where F(x) denotes the cumulative distribution of data x, and A, B, and k are the scale, location, and 
shape parameter, respectively. The peaks-over-threshold (POT) storm significant wave heights 
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constitute the data x. The quantile of the Weibull distribution for a given non-exceedance probability F 
is derived as the inverse function of Eq. (1) as below. 

xF = B + A[–ln(1 – F)]1/k       (2) 

In the regional frequency analysis, the first to fourth L-moments denoted by 1 to 4 are derived 
from a given distribution function, and the mutual ratios of  = 2/1,  = 3/2, and  = 4/2 are 
calculated. These ratios are called the L-CV (coefficient of L-variation), L-skewness, and L-kurtosis, 
respectively. Please refer to Appendix A for the definition of L-moments. The first L-moment 
represents the mean of the distribution function. 

The L-moments and their ratios for the Weibull distribution are given by 
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where (·) denotes the Gamma function. Van Gelder (2000) lists a set of formulas of the L-moments 
for the Weibull distribution, but his L-skewness () is given the sign opposite to Eq. (3) mistakenly. 
For a sample of extreme data, the L-moments are evaluated by algebraic calculations. The estimated 
values may deviate from Eq. (3) owing to sample variability. Hosking and Wallis (1997) use the 
symbols of t, t3, and t4 for the sample values for their differentiation from the population values of , 3, 
and 4. Nevertheless, the latter symbols are used in the present paper for the sake of simplicity. 

 Once the L-moment ratios are evaluated from a sample, the parameters of the Weibull 
distribution are directly estimated by the following formulas: 

k = 285.33
6 – 658.63

5 + 622.83
4 – 317.23

3 + 98.523
2 – 21.2563 + 3.516  (4) 

)/11(,
)/11()21( 1/1

2 kAB
k

A
k




          (5) 

Equation (4) is empirically obtained by fitting a polynomial function to the relation between 
and k ; the fitting error is less than 0.3% for the range of 0.6 < k < 3.0. 

 
CHARACTERIZATION OF DISTRIBUTION FUNCTIONS 

The present paper employs the Generalized Extreme Value (GEV), the Generalized Pareto (GPA), 
and the Weibull distributions as the candidates of data fitting. The GEV distribution is a synthesis of 
the Fisher-Tippett type I, II, and III distributions, while the GPA distribution is a non-asymptotic 
distribution function. These functions are well discussed in statistical textbooks such as Coles (2001). 
Their functional forms are given below.  

GEV:  
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GPA:  
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When the shape parameter k of GEV is positive, it becomes the FT-III and has the upper limit at B 
+ A/k. When k = 0, it is the FT-I or Gumbel distribution. When k < 0, it becomes the FT-II or Frechet 
distribution and has the lower limit at B – A/k. The GPA distribution becomes the exponential 
distribution for k = 0. It has the lower limit at B and the upper limit at B + A/k for k > 0. The L-
moments and the formulas for parameter estimation are well described in the book by Hosking and 
Wallis (1997) and are not listed here. 

These distribution functions are characterized with the mutual relationship between L-kurtosis and 
L-skewness as shown in Fig. 1, which includes the Pearson type III distribution. The GEV and GPA 
distributions are plotted with differentiations for k > 0, k = 0, and k < 0. Positions of the Weibull 
distribution with typical k-values are shown with square symbols, while positions of the GEV with 
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typical negative k-values are marked with diamond symbols. Because the behavior of the Pearson type 
III distribution is not much different from the Weibull or GPA distribution, it is not included in the 
candidate distributions for extreme wave data; it is rather unfamiliar in coastal engineering applications. 
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Figure 1. Relationship between L-kurtosis and L-skewness of several extreme distribution functions. 

 
PEAKS-OVER-THRESHOLD WAVE DATA FOR ANALYSIS 

The Port-administrating agencies under the Ministry of Land, Infrastructure, Transport and 
Tourism of Japan have been operating a nation-wide wave observation network called NOWPHAS 
(Nationwide Ocean Wave information network for Port and HAbourS) since 1970 (See Goda et al, 
2000). Currently it has 61 seabed-mounted wave sensors and 11 GPS buoys, most of which are 
sending wave data to the Port and Airport Research Institute continuously for 24 hours daily.  

The wave data are statistically and spectrally analyzed for the duration of 20 minutes every two 
hours. Some stations have the wave record for nearly 40 years. Figure 2 shows the locations of major 
NOWPHAS stations. The data at eleven stations along the eastern coast of Japan Sea are analyzed for 
the regional frequency analysis. Table 1 lists the station names, locations, and other characteristics. The 
threshold level Hc was selected to yield the mean occurrence rate in the range of 10 to 15 per year. 
Several levels of the threshold heights were tried, but changes in estimated return wave heights were 
slight. 

All the POT data were normalized by being divided by the mean value of each data set. The first 
L-moment 1 and L-moment ratios of 11 station data have been calculated as listed in Table 2. The first 
L-moment 1 is calculated before normalization and is equal to the mean of the POT data. The 
discordancy measure Di is calculated for six stations from Rumoi to Niigata and five stations from 
Wajima to Hamada separately. According to the criterion by Hosking and Wallis, the wave data at 
these stations are judged as homogeneous.  

Table 1: Wave stations and major information of wave data analyzed in  the present study. 

Id Name Lat. Long. 
Depth
h (m)

Starting 
year 

Effec. 
duration 
(year) 

Nos. 
of 

data 

Hc 
(m) 

(H1/3)max 
(m) 

a Rumoi 43º52′ 141°28′ 49.8 1970 37.2 554 3.5 7.83 
b Setana 43º15′ 141°17′ 52.9 1980 26.3 330 4.0 9.43 
c Fukaura 40º40′ 139°55′ 51.0 1979 28.0 408 4.0 10.36 
d Akita 39º44′ 140°00′ 29.4 1981 22.8 314 4.0 8.74 
e Sakata 39º01′ 139°47′ 45.9 1970 34.4 518 4.0 10.65 
f Niigata 38º00′ 139°08′ 34.5 1989 18.4 252 3.5 8.48 
g Wajima 37º25′ 136°54′ 52.0 1979 28.7 298 4.0 7.73 
h Kanazawa 36º37′ 136°34′ 21.1 1970 32.3 387 4.0 8.14 
i Fukui 36º10′ 136°04′ 36.7 1980 18.0 248 3.5 7.79 
j Tottori 35º33′ 134°10′ 30.9 1979 26.2 320 3.5 7.54 
k Hamada 34º54′ 132°02′ 50.1 1974 29.9 400 3.5 7.93 
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Table 2: L-moment ratios and discordance measure. 

Station 
name 

Nos. of  
data, N 

 (m) L-CV 
L-skew-

ness 
L-kurt- 
osis 

Di 

Rumoi 554 4.440 0.0961 0.2484 0.1136 1.41 
Setana 330 4.989 0.0921 0.2766 0.1316 0.97 
Fukaura 408 5.097 0.1002 0.2792 0.1377 0.85 
Akita 314 5.202 0.1060 0.2676 0.1252 0.23 
Sakata 518 5.249 0.1093 0.2595 0.1258 0.93 
Niigata 252 4.437 0.1054 0.2995 0.1242 1.61 
Wajima 298 4.934 0.0819 0.2533 0.1207 0.64 
Kanazawa 387 5.104 0.0956 0.2248 0.0933 0.83 
Fukui 248 4.594 0.1111 0.2587 0.1149 1.08 
Tottori 320 4.346 0.0892 0.2974 0.1612 1.19 
Hamada 400 4.354 0.0912 0.2786 0.1259 1.27 

 

 
Figure 2. Location map of major NOWPHAS wave measurement stations. 
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The procedure of regional frequency analysis is summarized in Appendix B. As demonstrated in 
Figs. 3 and 4, the L-moment ratios are spread in relatively narrow ranges. Theoretical curves of 4 
versus 3 for the Weibull and GPA distributions are also shown in Fig. 4, suggesting the both 
distribution would fit to the wave data. 

 
REGIONAL DIVISION AND HETEROGENUITY MEASURES 

The regional frequency analysis requires homogeneity of the data within a region. Hosking and 
Wallis (1997) propose to check the homogeneity by using the following heterogeneity measure H: 

V
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where V is the quantity defined by the following with V and V being the mean and standard deviation 
of V to be evaluated by numerical simulation, respectively: 
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where N is the number of stations, ni is the number of data at the i-th station, t(i) is a quantity related to 
the L-moment ratio of the i-th station, and tR is the regional mean of the quantity estimated by fitting a 
Kappa distribution having four parameters to the regional data. 

The heterogeneity measure is checked with three quantities. The first measure H(1) concerns with 
the spread of L-CV value within a region. The second measure H(2) examines the distance of a data set 
from the center of gravity on the scatter diagram of L-CV and 3. The third measure H(3) calculates the 
distance of a data set from the center of gravity on the scatter diagram of 4 and 3. Hosking and Wallis 
(1997) states that the region can be judged as homogeneous when H ≤ 1 and may be heterogeneous if 
H > 2. Several regional divisions of 11 stations were tried as listed in Table 3. The three L-moment 
ratios are the regional weighted means with the weight of the number of data. According to the result 
of Table 3, the regions A, B, and C are regarded as heterogeneous as far as H(1) is concerned and the 
regions D, E, F are judged as homogeneous. The heterogeneity measures H(2) and H(3) remains below 
2 for all the regions A to F. 
 

Table 3: Regional mean L-moment ratios and heterogeneity measures. 

Region Stations Nos. L-CV L-skew L-kurt H (1) H (2) H (3) 

A a to k 11 0.0980 0.2656 0.1243 5.27 0.46 -0.70 
B a to f 6 0.1014 0.2680 0.1256 2.34 -0.31 -1.25 
C g to k 5 0.0931 0.2621 0.1225 4.49 1.27 0.69 
D a, b, c 3 0.0964 0.2653 0.1258 0.27 0.06 -0.19 
E d, e, f 3 0.1074 0.2712 0.1252 -0.93 -0.30 -0.83 
F g, h, j, k 4 0.0900 0.2627 0.1238 1.35 1.43 1.27 

 

FITTING OF REGIONAL DISTRIBUTION FUNCTIONS 

Hosking and Wallis (1997) have proposed to judge the degree of goodness-of-fitting of a distri-
bution by using the following quantity Z: 

444 /)(  DISTRDIST tZ        (10) 

where t4
R is the regional mean of L-kurtosis, 4

DIST is the value of L-kurtosis estimated from the 
regional L-skewness for a particular distribution, and 4 is the regional standard deviation of L-kurtosis 
for the Kappa distribution estimated by numerical simulation. They have been given an acceptance 
criterion of 64.1|| DISTZ  in consideration of the 90% confidence interval of the normal distribution. 

The GEV distribution was found to have the Z value in excess of 6 for the regions A to F, and 
thus it was unaccepted as the regional distribution. The GPA distribution had the Z value from –0.37 to 
–1.12 and was accepted as the regional distribution. The Weibull distribution had the Z value of 1.32 to 
1.61 for the regions C to F and was also accepted. Table 4 lists the parameter values of the regional 
Weibull and GPA distributions for the regions C to F. 
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Table 4: Parameter values of regional Weibull and GPA distribution. 

Region Weibull distribution GPA distribution 

 k A B k A B 

D 1.207 0.2348 0.7794 0.1612 0.2418 0.7917 
E 1.187 0.2574 0.7571 0.1467 0.2644 0.7694 
F 1.216 0.2209 0.7929 0.1678 0.2277 0.8050 
C 1.219 0.2291 0.7854 0.1693 0.2364 0.7980 
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Figures 5 to 7 show the comparison of non-dimensional wave heights with the estimated return 
wave heights for the range of return period from 0.1 to 1000 years. The return period of the m-th 
descending order wave height is assigned with the non-exceedance probability of Fm = 1 – m/ni and Rm 
= 1/[i(1 – Fm)], where ni is the number of data at the i-th station and i is the mean rate, because the L-
moments of the wave data have been computed using the unbiased plotting position as recommended 
by Hosking and Wallis (1997). The return period of the largest data is equal to the effective duration. 

As seen in Figs. 5 to 7, the return wave heights estimated by the GPA distribution are smaller than 
those by the Weibull distribution for the range of return period longer than about 3 years. Individual 
wave data are scattered around the fitted distributions, but the fitted distributions are regarded as 
representing the population distribution at each region. The wave data at Fukui shown in Fig. 7 exhibit 
some deviation from other stations and the deviation is a cause of a high heterogeneity measure H(1) in 
Table 3; the distributions fitted to other four stations in the region C are nearly the same as those 
shown in Fig. 7. 

 
RETURN WAVE HEIGHTS OF INDIVIDUAL STATIONS 

The distribution functions for individual stations are obtained by multiplying the non-dimensional 
scale and location parameters in Table 4 with the mean wave height of respective stations while 
retaining the same shape parameter. Examples of return wave height estimates together with observed 
heights are shown in Figs. 8 to 13. 

The curves marked with “region” are the estimates of wave heights using the regional distribution, 
while those with “single” are the estimates using the distribution fitted to individual station data. In the 
case of Fukui in Fig. 12, individually fitted Weibull and GPA distributions differ much from the 
regional ones, reflecting the deviation of Fukui data from other stations shown in Fig. 7. 
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      Figure 8. Return wave height of Setana        Figure 9. Return wave height of Sakata 
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     Figure 10. Return wave height of Niigata        Figure 11. Return wave height of Kanazaw 
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     Figure 12. Return wave height of Fukui      Figure 13. Return wave height of Hamada 

 
Choice of the Weibull or the GPA distribution for the coastal stations along the Japan Sea requires 

some engineering judgment, because the both distributions fit well to observed wave data. However, 
the GPA distribution predicts a smaller return height for a long return period than the Weibull. Table 5 
is a comparison of 100-year significant wave heights estimated with the Weibull and GPA distributions 
as well as the maximum significant wave height observed during 18 to 37 effective years (see 
DISCUSSION for LSQ H100). 
 

Table 5: Comparison of estimated 100-year wave height with maximum observed height. 

Region 
Station 
name 

Weibull 
H100 (m)

GPA  
H100 (m)

(H1/3)max 

(m) 
LSQ 

H100 (m) 
D Rumoi   8.88   8.12   7.83 8.66 
D Setana   9.86   9.06   9.43 9.52 
D Fukaura 10.17   9.32 10.36 10.24 
E Akita 11.03 10.13   8.74 10.10 
E Sakata 11.20 10.27 10.65 10.98 
E Niigata   9.40   8.64   8.48  9.07 
F Wajima   9.28   8.58   7.73  8.76 
F Kanazawa   9.69   8.93   8.14  9.67 
C Fukui   8.94   8.19   7.79  9.45 
F Tottori   8.26   7.61   7.54  8.17 
F Hamada   8.33   7.65   7.93  8.25 

 

As exhibited in Table 5, the 100-year wave height estimated by the GPA distribution is less than 
the maximum observation height at four stations. It would not be wise to employ the GPA distribution 
for the viewpoint of safe structural design. 
 
DISCUSSIONS 

Previously, Goda et al. (2000) made another approach in search of regional population 
distributions of extreme wave heights around Japan with the least squares method. The rejection 
criteria called REC and DOL were applied to POT wave data at multiple stations in a region, and the 
distribution function least rejected was recommended as the population distribution. For the eleven 
stations around the Japan Sea coast, same as the present ones, the Weibull distribution with the shape 
parameter of k = 1.4 was judged to represent the population. The data duration was 10 years less than 
the present ones. 

The estimated 100-year wave heights by the least squares method (LSQ) with the present data set 
are listed at the rightmost column of Table 5. They are generally smaller than the Weibull estimates 
with k ≈ 1.2 but greater than the GPA estimate. Smaller prediction by LSQ may be caused by fitting of 
a larger shape parameter of k = 1.4, but occurrence of large storm waves in the last ten years must have 
contributed to the increase of 100-year wave heights in the present analysis. 
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In the present paper, confidence intervals for the estimated return wave heights have not been 
worked out yet. Hosking and Wallis (1997) recommend use of the Monte Carlo simulation technique 
for estimation of the confidence interval once a best-fitting distribution function is selected. This is one 
of the tasks which are intended to be pursued in the near future by the authors. 

 
CONCLUSIONS 

Major findings of the present study are summarized below. 

1) Long wave observation records at the eastern coast of Japan Sea enabled a detailed examination of 
extreme statistics by means of the regional frequency analysis method with the sample size of 248 
to 554 for the effective duration of 18.0 to 37.2 years. 

2) The L-moments of the Weibull distribution and parameter estimation formulas have been derived 
and successfully applied to the POT data.  

3) Eleven stations around the east coast of Japan Sea were grouped into three homogeneous regions. 
4) Characteristics of regional distributions were established and the shape, scale, and location 

parameters were estimated for three regions. 
5) Return wave heights at eleven stations were estimated by converting the regional, normalized 

distribution function into the dimensional distribution functions at respective stations.  
6) Both the Weibull and GPA distributions fitted well to the wave data analyzed, but the latter is not 

recommended for engineering applications because of its tendency to predict a low wave height 
for a long return period. 
 

APPENDIX A: Definition of L-moments and L-moment Ratios 

For a random variate X, a cumulative distribution function is defined as the probability that X is 
equal or less than some specified value x, i.e. 

]Pr[)( xXxF          (A.1) 

On the other hand, the value x for a given probability P is called as the quantile function x(P), i.e. 

)(,)]([ 1 PFxPPxF         (A.2) 

The probability-weighted moment r is defined with the quantile function as follows: 


1

0
)( dPPPx r

r         (A.3) 

Hosking (1990) defined the L-moments using the moment r as in the following: 

1 = 0         (A.4) 

 2 = 21 – 0        (A.5) 

 3 = 62 – 61 + 0       (A.6) 

 4 = 203 – 302 + 121 – 0      (A.7) 

He further defined the L-moment ratios as below. 

  L-CV (coefficient of L-variation): 12 /       (A.8) 

L-skewness:     233 /      (A.9) 

L-kurtosis:     244 /             (A.10) 

 For a sample of extreme data of the size n, the data are first sorted in the ascending order of 

nxxx  21
. Then the unbiased estimator of r is calculated with the following formulas:  





n

j
jx

n
b

1
0

1         (A.11) 
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
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
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)1(1        (A.12) 


 




n

j
jx

nn

jj

n
b

3
2 )2)(1(

)2)(1(1       (A.13) 

and in general, 


 




n

rj
jr x

rnnn

rjjj

n
b

)()2)(1(

)()2)(1(1



      (A.14) 

The sample L-moments are calculated with the above estimators as follows: 

01 b          (A.15) 

012 2 bb          (A.16) 

0123 66 bbb          (A.17) 

01234 123020 bbbb        (A.18) 

The sample L-moment ratios are given by 

 Sample L-CV (coefficient of L-variation):  12 / llt     (A.19) 

Sample L-skewness:     233 / llt     (A.20) 

Sample L-kurtosis:     244 / bbt      (A.21) 

An example of calculation of sample L-moments is given in Table A.1 for annual maximum wind 
speeds for ten years cited in Hosking and Wallis (1997). The first column is the order number, the 
second column is the annual maximum wind speed, and the third column is the sorted wind speed in 
the ascending order. 

Table A.1. Example of calculation of sample L-moments. 

 

 

 

 

 

 

 

 
 
From the calculation result in Table A.1, the sample L-moments and their ratios are obtained as 
follows: 

1543.0,0938.0,0972.0

,7405.0,450.0,8.4,4.49

43

4321




ttt

  

If the sample is fitted to the Weibull distribution, the sample L-skewness of t3 = 0.0938 yields an 
estimate of k = 2.17 by means of the empirical formulas of Eq. (4) and A = 19.8 and B = 31.8 by Eq. 
(5). 
 

j x b0 = xj b1 b2 b3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

45 
47 
65 
50 
56 
55 
37 
53 
44 
42 

37 
42 
44 
45 
47 
50 
53 
55 
56 
65 

4.666667 
9.777778 
15.00000 
20.88889 
27.77778 
35.33333 
42.77778 
49.77778 
65.00000 

1.222222
3.750000
7.833333
13.88889
22.08333
32.08333
43.55556
65.00000

0.535714
2.238095
5.952381
12.61905
22.91667
37.33333
65.00000

  49.4 27.1 18.94167 14.65952
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APPENDIX B: Procedure of Regional Frequency Analysis with the L-moments Method 

Suppose that extreme statistical data such as POT wave heights are obtained at N stations with the 
sample size being ni for the i-th station. According to Hosking and Wallis (1997), the procedure of 
regional frequency analysis is as follows: 

1) Normalize the wave data of each station by dividing them by its mean value so that the data 
become non-dimensional.  

2) Calculate the L-moments and of L-moment ratios of normalized data at each station. The first L-
moment l1 is 1 because of normalization. 

3) Group the stations into a number of regions by means of the site characteristics such as 
geographical features. 

4) Calculate discordancy measure Di for the stations within a region, and check if no station is 
discordant with other stations. 

5) Calculate the heterogeneity measure by Eqs. (8) and (9), and check if each region is homogeneous. 
6) Calculate the regional L-moment ratios for each region as the weighted means using the sample 

size as the weight. 
7) Estimate the parameters of several candidate distributions using the regional L-moment ratios. 
8) Select the best-fitting regional distribution function by referring to the value of ZDIST by Eq. (10). 
9) Construct the distribution function of each station by using the dimensional scale and location 

parameters which are obtained as the product of regional non-dimensional parameters and the 
mean value of each station. The shape parameter k is set as equal to the regional shape parameter. 

10) Estimate the return extreme value corresponding to a given return period in combination of the 
mean occurrence rate. 
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