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APPLYING THE WAVELET TRANSFORM                                                                             
TO STUDY THE FEATURES OF FREAK WAVES 

Li-Chung Wu1, Beng-Chun Lee2, Chia Chuen Kao1, Dong-Jiing Doong3, Chih-Chiang Chang

The issues of freak waves are more and more popular since the late 1980s. This study tries to use the wavelet 
scalogram of freak wave records to investigate the energy characteristics during the occurrence of the freak waves. 
Through the analysis of the wave energy and phase, it is found that as freak waves occur, the component waves will 
lead to constructive superposition due to similar phases. The wavelet scalogram provides the other idea to explain the 
features of freak waves. 
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INTRODUCTION  
Freak waves are defined as wave whose heights are more than twice the significant wave height 

(Chalikov 2009). At present, the phenomenon of freak wave is still a matter of active research. Due to 
their danger to various ocean actives, many studies tried to find out mechanisms of freak waves by 
different methods, so as to decrease the damage from freak wave events. For example, Onorato et al. 
(2001) studied freak waves generation in a random sea state characterized by the Joint North Sea Wave 
Project (JONSWAP) spectrum. They revealed how freak waves in a random sea state are more likely 
to occur for large values of the Phillips parameter and the enhancement coefficient showed from 
extensive numerical simulations of the nonlinear Schrödinger equation. Gramstad and Trulsen (2010) 
applied numerical Monte Carlo simulations to discuss the features of freak waves. They found 
evidence that a realistic short-crested wind sea can on average experience a small increase in freak 
wave probability. 

In addition to numerical simulation, the in-situ measurement of ocean waves can help study the 
features of freak waves too. Field measurements must be performed to increase practical knowledge of 
waves. However, most observation sensors are suitable for application nearshore or in shallow water 
areas. Apart from remote sensing devices, buoys and vessels are the only platforms to satisfy wave 
measurement in deep water areas (Tucker and Pitt, 2001). In-situ wave acceleration records measured 
from data buoy can be transformed into the acceleration spectrum by the suitable spectrum 
transformation method. Wave spectrum, which can be obtained from the acceleration spectrum by the 
transfer function, should be an ideal tool to discuss the features of freak waves in frequency domain. 
The Fourier transform was often used in the past to calculate the spectral information from the 
acceleration records. For the algorithm of the Fourier transform, stationarity within the observed period 
was assumed. However, it is a fact that most real signals in nature should be non-stationary; as are 
natural wave signals. If the algorithm of Fourier transform is used in the wave analysis, what can be 
perceived is just the average energy of this section on the frequency spectrum, and the instantaneous 
energy structure, in fact, can not be viewed from the Fourier spectrum.  

The wavelet transform method has increased its applications in recent years since its inception in 
the early 1980s. The wavelet transform is now recognized as a useful, flexible, and efficient technique 
to analyze non-stationary signals as well as wave records which are obtained from experimental or in-
situ measurements. The wavelet scalogram, obtained from the wavelet transform of wave records, 
presents wave features in time and also frequency domain. It should be a proper tool to observe 
instantaneous energy structure from the freak wave events. Thus, this research tries to discuss the 
features of the freak wave events through the wavelet scalogram and the instantaneous energy 
structures for freak waves to occur. 

THEORETICAL PRELIMINARIES  
Based on the theory of one dimensional continuous wavelet transform, the acceleration signal can 

be broken into various wavelets which are scaled and shifted versions of a pre-chosen mother wavelet 
function. The acceleration signal )(tAc  corresponds to the acceleration value of each time point t . The 
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continuous wavelet transform ),( abWAc  of acceleration signal )(tAc  for a transformed mother wavelet 

abψ ,  is: 
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in which the scaling parameter a  is related to the dilated frequency in the time domain. The non-
dimensional scale factor a  gives all dilated versions of the mother wavelet the same energy, that is, it 
is the ratio of the size of the dilated wavelet to the size of the mother wavelet. The translation factor b  
corresponds to the position of the wavelet function as it shifts through the whole time domain. The 
mother wavelet function abψ ,  must satisfy two mathematical properties to be classified as ‘wavelets’. 
First, they must have must have finite energy: 
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Second, they must have an “admissibility condition”, which can be expressed by: 
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in which the function ψ̂  is the Fourier space of function ψ ; it means the function in frequency 
domain. ω  is the frequency. Eq. (1) can also be expressed as:  
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where *ψ  is the complex conjugate of the wavelet function ψ . ),( abWAc  conserves the norm of the 
signal, thus its total energy (Buessow 2007): 
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To implement the Equations above, it is necessary to choose a mother wavelet function ψ  first. 
The Morlet wavelet function, which is a popular wavelet function used in many applications, is chosen 
here for detecting the instantaneous wave information from the acceleration signal. The Morlet mother 
wavelet function and its function in the Fourier (spectral) space, as defined in Eqs. (7) and (8), were 
used throughout the implementation procedures in this study. 
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in which 0ω  is a constant that forces the admissibility condition , as shown in Eq. (3), to be satisfied. It 
was suggested to set up as 5.5 following the previous study (Jordan et al. 1997). For calculating the sea 
surface elevation time series ( )tη  from the energy, the inverse wavelet transform is applied here: 

 
( ) ( )∫ ∫

∞ ∞

∞−
⋅=

0 2,),(1
a
dadbtabW

C
t abψη η

ψ  (9) 



 COASTAL ENGINEERING 2010 
 

3 

where ),( abWη  is the continuous wavelet transform of the sea surface elevation time series ( )tη , it is 
related to ),( abWAc . ),( abWAc  presents the energy features in the domain of parameters a  and b , it is 
related to the function of sea elevation. A regular wave in the time domain, the water level could be 
given by: 

 ( )επft2Ptη +⋅= cos)(  (10) 

in which P  is the wave amplitude, f  is the frequency, and ε  is the phase of the wave component. 
The sea surface elevation is the double integral of the wave acceleration signal )(tAc . In other words, 

)(tAc  is the double differential of )(tη : 
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As shown in Eq. (11), the transfer function between the wave acceleration and water level function 
should be ( )2πf2− : 

 ( ) )(2)( 2 tAft c
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As shown in Eq. (4), the relationship between ),( abWAc  and )(tAc  has been revealed. Similar to 
Eq. (4), the relationship between ),( abWη  and )(tη  was shown here: 
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Combining Eqs. (4), (12) and (13), we can calculate the wavelet coefficient of the sea surface 
elevation from the wavelet coefficient of the wave acceleration signals: 

 ( ) ),(2),( 2 abWfabW Ac⋅−= −πη  (14) 

Therefore, the sea surface elevation can be obtained from the wave acceleration records by Eqs. 
(9) and (14). The wavelet scalogram is called 

2

η abW ),(  (Yeh and Liu 2008), the scalogram is a 

measure of the energy distribution over time shift factor b  and scaling factor a  of the signal. 
According to the law of the conservation of energy, the relationship between the water level and 
wavelet scalogram is shown here: 
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The transfer function between the wavelet scalogram 
2

η )a,b(W  and 2

Ac abW ),(  is shown here: 
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To apply Eqs. (9), (14) and (16), we can obtain sea surface elevation from the acceleration signal 

)(tAc . The flow chart of the whole algorithm described above is shown in Fig. 1.  
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Figure 1. The flow chart to derive wave scalogram and sea surface elevation. 

 

VERIFICATION OF THE WAVELET ALGORITHM  
To understand the feasibility of wavelet scalogram and sea surface elevation from the non-

stationary acceleration signal, here we simulated the wave signals in the time domain: 
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in which T  is the total time duration of the sea surface elevation, the definitions of other parameters 
are the same as those in Eq. (10). In Eq. (17), 11 =P  m, 1.01 =f  Hz, 5.02 =P  m and 2.02 =f  Hz are 
used to simulate two different kinds of wave system. To analyze discretely sampled data, such as the 
wave records from the wave sensor, it is necessary to discretize the sea surface elevation function. A 
simplified example as shown in Eq. (18) could be introduced to explain the idea: 

 tNT t∆=  (18) 

The discrete velocity and acceleration of the sea surface elevation can be obtained by: 

 [ ] ttttte NmtmmmV ,....,2)1()()( =∆−−= ηη  (19) 
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For this study, the sampling rate of wave data, both from simulation and in-situ observed data, are 
2 Hz. This means 5.0=∆t  sec in the cases of study. The data samples are 1024 points for every case 
of the study. In other words, the duration of wave data records would be 512 sec. Fig. 2(a) shows the 
wavelet scalogram of the wave signals calculated by the theories of wavelet transform and Eq. (14) 
from the simulated water level signal. Because of the capability for time-frequency analysis (Lee et al. 
2007), the scalogram presented the energy of the signals distributed over the time-frequency domain. 
The spectral characteristics in different time points from the whole time domain are presented by the 
wavelet scalogram. As shown in Fig. 2(a), obvious energy is concentrated in the very low frequency 
band. This is influenced by the transfer function ( ) 22 −− fπ  which was described in Eq. (14). This 
energy on the very low frequency band is seen as noise; is necessary to remove the energy from the 
very low frequency band from the wavelet scalogram. A filter with a cut off frequency of 0.03 Hz was 
used to eliminate the low frequency noise (Wang et al. 1993). Fig. 2(b) shows the wavelet scalogram 
result after removing the noise from the low frequency band. The energy distribution from Fig. 2(b) is 
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concentrated on the frequency bands of 0.1 Hz during the first half of the scalogram in the time 
domain, and is concentrated on the frequency bands of 0.2 Hz during the latter half of the scalogram. 
This agrees with the input conditions of the simulated wave signals. 

 
 
Figure 2. (a). The wavelet scalogram of wave signals which are calculated by the wavelet transform; (b). The 
wavelet scalogram result after eliminating the noise from low frequency band. 

 

WAVELET SCALOGRAM OF THE FREAK WAVES  
Here we calculate the wavelet scalogram from the natural ocean wave signals. The acceleration 

signals are collected from the Hualien sea area in the eastern part of Taiwan (Fig. 3). This sea area lies 
on the border between the largest land mass and the largest ocean in the world. As a result, the marine 
environments here are complex and sensitive. 

 
 
Figure 3. Location of in-situ wave stations in Taiwan. 

 
Figure 4 shows an example of wavelet scalogram and its sea surface elevation. It is revealed that 

the positions where the maximum wave energy from the wavelet scalogram are often positions of freak 
wave events. In addition to observe the features of energy, the wavelet scalogram also provides the 
information of wave phase.  Based on the mathematical characteristics of Morlet Wavelet function, the 
function )a,b(Wη  should be a complex number. It is possible to obtain the phase information by: 
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where ε  is the phase angle of wave components. Hence, we can transform the scalogram into the 
phase spectra. As shown in Fig. 5, the phase angles from the phase spectra are quite similar around the 
frequency bins of peak frequency from most of the freak wave cases. Due to the similar phase angles 
from different frequency bins, the sea surface elevation may form an extreme wave. This should be one 
of the factors to result in freak waves. We also discuss the instantaneous phase spectra before and after 
before the occurrence of freak wave. The results show that the phase distributions in Fig.6 and Fig.7 
are more dispersive than that in Fig.5. This result explains why the freak events are often instantaneous. 
The results of wavelet scalogram and phase spectra present the difference of phase distributions 
between freak wave and non-freak wave events. Our results provide the other idea to understand the 
feature of freak waves. 

 
 

 
 
Figure 4. (a).Water level time series; (b). Wavelet scalogram. 

 

 
 
Figure 5. The phase spectrum analyzed by the wavelet algorithm: The instantaneous phase spectrum of freak 
wave. 
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Figure 6. The phase spectrum analyzed by the wavelet algorithm: The instantaneous phase spectrum before 
the occurrence of freak wave. 

 
 
Figure 7. The phase spectrum analyzed by the wavelet algorithm: The instantaneous phase spectrum after 
the occurrence of freak wave. 

SUMMARY  
This study applies the advantage of the fact that the wavelet scalogram simultaneously possesses 

the energy distributions for time and frequency to investigate the energy characteristics during the 
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occurrence of the freak waves. Through analysis of the wavelet phase spectrum and phase spectra, it is 
found that as freak waves occur, the component waves will lead to constructive superposition due to 
similar phases. The preliminary results from our study reveal the wavelet transform should be a proper 
tool to observe instantaneous energy structure from the freak wave events. 
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