

Leichtweiß-Institute for Hydraulic Engineering and Water Resources Department of Hydromechanics and Coastal Engineering

Wave Loads On And Beneath Bonded Permeable Revetments - Gisa Ludwigs, Hocine Oumeraci, Tijl Staal -

Motivation

Permeable revetments made of bonded mineral aggregates may increasingly be favoured compared to standard revetments. However, the physical processes associated the water-structure-soilwith interaction for a wide range of wave conditions are still not well understood. Therefore, systematic large-scale model tests have been performed in the Large Wave Flume (GWK) of the Coastal Centre (FZK) Research in Hannover, with the intention of improving the understanding of these processes.

Experimental Set Up and Test Programme

Fig. 1 Pressure transducers in and around the wave breaking zone for model alternative B

- irregular waves
 (≈ 1000 waves: H_{m0} ≤ 1.2 m,
- T_{m-1,0} ≤ 8 s)
- water depths h = 3.4 to 4.2 m
- 48 pressure transducers (Model B: Fig. 1)
- two synchronously tested models (all three model alternatives: Fig. 2)
- surf similarity parameter

- E = ELASTOCOAST 0.15m (crushed limestone 20/40 mm; crushed granite 16/36 mm)
- A = Filter layer 0.10/0.20m (same as revetment)
- **G** = Geotextile (Terrafix 609)
- S = Sand foundation (D_{50} = 0.34mm, U = 2.11) Model C

Fig. 2 Model alternatives A, B, C

Classification and Parameterization

Before starting the detailed analysis, a preliminary analysis was performed in order to check and pre-process the data, but primarily to classify the type of wave loads. For irregular waves, impact loads occur for $\xi < 2.5$ and non-

Results

Using empirical approaches the parameters were determined based on the surf similarity parameter $\xi = \xi_{m-1,0}$ (Tabs. 1 to 4). While the wave-induced pressure is substantially damped through the porous revetment for impact loads, this is not the case for the non-impact loads, which are almost fully transmitted through the revetment.

impact loads for $\xi > 2.9$ (Fig. 3). The range of intermediate ξ -values ($\xi = 2.5 - 2.9$), called hereafter "transition zone", exhibits mixed features of both impact and non-impact loads. The parameterization of the pressure in the time domain and in space is given in Figs. 4 to 6 for impact and non-impact loads.

Tab. 1 Time related parameters for impact loads on the revetment (see also Fig. 5a)

$t_D/T_{m-1,0}=0.06$	$t_A/t_D = 0.5 \cdot \xi - 0.8$	$t_{stat,imp}/T_{m-1,0}=0.12$
----------------------	---------------------------------	-------------------------------

Tab. 2 Space related parameters for impact loads (see also Fig. 6a)

a) On the revetment									
	0	1	2	3	4				
p/p _{max}	1	0.5	0.4	0.4	0				
z/z _{pmax}	1	1.5	0.6	3.0	$-\frac{H_{m0}}{z_{p_{max}}} \cdot 0.89 \cdot \xi$				

b) Beneath the revetment

	0'	2'	3'	4'
p'/p _{max}	0.6	0.4	0.4	0
z'/z _{pmax}	1.2	0.8	3.2	$-\frac{H_{m0}}{z_{p_{max}}} \cdot 0.89 \cdot \xi + 0.2$

Tab. 3 Time related parameters for non-impact loads on the revetment (see also Fig. 5b)

 $t_{stat,1}/T_{m-1,0}=0.3$ $t_{stat,2}/T_{m-1,0}=0.6$

Tab. 4 Space related parameters for non-impact loads (see

LWI

Leichtweiß-Institute for Hydraulic Engineering and Water Resources Technische Universität Braunschweig

Beethovenstraße 51a 38106 Braunschweig Germany

 Tel./ Fax:
 +49 (0)531 391-3930 / -8217

 Internet:
 http://www.lwi.tu-bs.de

 E-Mail:
 hyku@tu-bs.de

 $|Z_3|$

Funding BASF Polyurethanes GmbH