REASSESSING RELIABILITY BASED ON SURVIVED LOADS

Timo Schweckendigk

The reliability of flood defenses is often dictatieyl large uncertainties in the hydraulic loadingl dnhe structural
resistance. Additional information decreases uad®st, however, acquiring it is often costly. Oneusce of

information, even though in many cases readily lalk#, is hardly used — survived loads. This aetisthows how
data on survived load conditions can be incorpdratereliability analysis by means of Bayesian t@ghes. The
theory is illustrated by simple and realistic exéesp In contrast to other sources of informatiogassessing
structures using survived load data always leadsigher reliability or lower probability of failureFurthermore,
attention is given to the expected developmenaitdife in time. This may be relevant for situatiowbere the safety
requirements of a structure are stated in ternasd#sign or inspection period. For both, re-assgssiiability based
on (one time) survived loads as well as the expleirierease of reliability in time, the examples whsignificant

impact. Use of this knowledge may, consequentfig sast of construction or reinforcement.
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INTRODUCTION

Breaching of flood defenses such as dikes cantteadvere inundations and substantial damage in
the hinterland. Therefore, not only the height adike is important but also its structural resis&n
against other, mainly geotechnical failure mechasitsike slope failure or piping (also called under-
seepage). As opposed to the easily measurable ggofineluding the height), geotechnical resistance
properties are hard to determine, resulting indangcertainties. These uncertainties regarding the
properties of the dike body and its foundation mfieminate the probability of failure.

Therefore, every bit of information on the relidlyilof a flood defense is valuable. One source of
information is hardly used: survived loadings. $ved loadings are very much like incomplete load
tests, except they are neither intentional nor vrubmtrolled conditions. However, as long as the
relevant parameters were measured, the relialoititgrobability of failure can be updated using thes
data.

This paper not only shows how the probability afuie can be updated by applying Bayesian
techniques with historical survival data (postergmralysis), it also treats how we can determine the
expected increase of reliability in time (pre-poste analysis). The theory is illustrated by retidis
numerical examples of the piping failure mechanism.

The next chapter provides the mathematical backgroof reliability theory and Bayesian
Updating. After that, simple numerical examplesvide an idea of the impact of incorporating surliva
information. Subsequently, realistic numerical eples illustrate the effects that can be expected
applying the presented techniques in practice.

(RE)ASSESSING RELIABILITY

This chapter recapitulates the basic reliabilitgaty necessary for understanding the Bayesian
techniques explained subsequently. It ends witrsidenations on the expected development of the
probability of failure in time.

Prior Probability of Failure
The general expression for the probability of falis given by:

Py = P(Z(X) < 0) = / fx(x) 1[Z(X) < 0] dx @)

whereZ (-)limit state function

fx(x)probability density function (p.d.f.) of the vectr random variableX
1[-]indicator function

The integral on the right-hand side can, if anabftsolution is not tractable, be solved numenchil
well-known techniques, such as the First-Orderaddity Method (FORM, Hasofer and Lind (1974)),
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Monte-Carlo simulation (MCS) or Numerical Integaati(NI). The analyses in this paper mainly rely
on numerical methods.

If carried out with prior probability distributionsf the random variables, the result may be called
prior probability of failure, expressing that nodéenal information than the initially availableas
been incorporated yet.

Posterior Probability of Failure

The posterior (or updated) probability of failurancbe determined by applying Bayes’ theorem
(Bayes (1763)) in basically two different fashiobg,updating the basic random variables and repgati
the reliability re-determiningp;, or by directly updating?; making use of the definition of conditional
probability and the correlation between the histlty observed event and the future event to be
assessed.

For updating the random variables, first their paters are updated using Bayes’ theorem:

fo(Ole) = kL(0) fo (0) 2

whereOvector of distribution parameters of random vdeaX (fx (x|6))
eevidence (information to be incorporated)

fe(0)probability density function c©

L(6)likelihood function of the parameterP(¢|6))

knormalization constant (to ensure proper p.d.f.)

Integrating out the uncertainty in the updated peters gives the updated distribution of the random
variables themselves:

Fx(xle) = / Fx(x10) for (0]c)do 3)

Using this updated distribution of the random Malea in Eq. (1), gives the posterior probability of

failure. The same is achieved by applying the diim of conditional probability:

P(Z(X) < 0N Zy(X) > 0)
P(Zn(X) > 0)

P(Z(X) <0[Zn(Xp) > 0) = (4)

where Z;,(X) > 0 describes the historical survival event, wkZ(X) > 0 still describes the future
failure event to be assessed. This implies Xatow needs to include the random variables with the
information of the historical event. such as infatibn on the observed (deterministic or uncertain)
loading conditions.

Since in most cases analytical solutions of thevatare intractable or at least cumbersome, again,
techniques like MCS or NI can be applied. Alternaly, first-order system reliability methods as
proposed by Hohenbichler and Rackwitz (1983) candssl in combination with FORM and are often
more insightful.

Notice that in Eq. (4) the same limit state equaZ;, for the survival event does not necessarily
need to be the same failure mechanisnZa fact, any event correlated with the failureetto be
predicted provides additional information, be ilfee or survival regarding another mechanism or
measurements or monitoring or relevant properfié® stronger the correlation, the more significant
the impact of updating is. The condition, thoughthat the information needs to be expressed as an
inequality (i.e.,h(X) < 0, see Ditlevsen (1996)).

Expected Development of Probability of Failure in Tim e (“Pre-posterior”)

So far, we have treated updating with informatiéhistorical or past events. The information may
either be deterministic (e.g., measurements witjligible error) or uncertain, the method can cope
with both. But what about the future? We alreadgvithat the flood defense will experience loadings
in the future, too, and probably also extreme omesnany cases we even have statistics for these
loadings, such as extreme value distributions efaghnual maxima of river discharges or water levels
Technically, updating a probability of failure widm uncertain future loading is no different thathw
an uncertain loading in the past. That enables asidlyze the expected development of the prolabili
of failure in time.

In order to develop the necessary mathematicshisrpgurpose, we first introduce the following
shorthand notation for failure and survival events:
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F={Z(X)<0} & F={Z(X)<0} (5)

Furthermore, a time index is introduceF; means failure in yedr or Z(X;) < 0. The index used for
the vector of random variableX means that, since our state of knowledge of thelaa variables
changes, their probability distribution might diffeecom year to year. Thus in yearwe use the
probability distribution that includes all the imfoation included up to ye&tl.

Consequently, the posterior probability of failireyeari, given survival in yeay (j<i) may be
written asP(F;|F};). The expected probability of failure in yeadepends on the conditional (updated)
probability of failure in that year and the proldapiof survival in the previous years:

P(F;) = P(F;|Fi-1) P(Fj41|F}) - P(F1) = P(F;|F—1) - (1 — P(F;—1))(6)

Notice that, even though all past events influeP(F;), the state of knowledge of yead is
sufficient to determineP(F;), a sort of Markov-property that is very practidal computational
implementation.

LOAD VS. RESISTANCE (Z=R-S)

In order to illustrate posterior as well as pretpder analysis, we first look at the simple claasi
but insightful, example of one load and one resistavariable with the limit state functiZ = R — S
(i.e., failure isF = {R < S}). In all the subsequent cases, we assume theSoadbe i.i.d. in time

with p.d.f. fs(s).

General Expressions
Since our state of knowledge Rfchanges in timeR; is the random variable representing our state

of knowledge in yeai. Thus, the probability of failure in yeamay be written as:
P(F) = P(R: = Si < 0) = [ F(s0) fs(s) ds, ™

Let a historical survival event be denotecF; = R; > §; (i.e., non-failure in yegj), in whichs; is the
observed load. Then, the posterior probabilityadiftife in yeai (i>j )may be expressed as:

P(RIFS) = P(R: < SilRs > 5) = [ Frye, (o) fs(s) dsi (@)

whereFp, 5, (s) is the updated fragility curve (probability oflfaie, conditional on the load) curve. For
more than one, say survival events, the expression becomes:

P(F|NFj) =P(R; < Si|[{{R; > 5;}) j=12Z[1,M] 9)

Similarly, we may evaluate the expected developroétite probability of failure in time by
considering the effect of the uncertain value efdbserved load:

P(Fi|Fi 1) = / Frop . (50) fs(i1) fs(si) dsia dsi (10)

Notice that in Eg. (10), the conditional probalilof failure in a year, given survival of the
previous year, the uncertainty of the load is iraégd out twice, once accounting for the unceryaimt
the future loading and once accounting for the ttageeffect of updating with the yet unknown laad
yeari.

Applying the law of total probability we need to ftiply still with the probability of survival of
yeari in order to obtain the “expected” probability ofifiae in yeari+1 (compare Eq. (6)). Thus, for a
time series of the (expected) probability of faélirom yearl to N, we would need to consider the
following integral:

{Rn < Sy}N (ﬂ{R] > Sj})] drds j=1[1,N—1](11)

J

P(Fy]| ﬂ Fy) = /fR,s(r, s) 1

J
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where fr s(r,s) is the joint p.d.f. of the resistance and loadaldesR; andS; in yearsi = Z[1, N]|.
Notice that not only the resistance propertiesnantually dependent in subsequent years, but dtleeto
updating based on survival, also the resistancerbes dependent of the loading in previous years.
Solving the integral in Eq. (11) for cases withepecial (in)dependence assumptions of the resistanc
in time (i.e.,0 < p(R;, R;) < 1), is not trivial and left for further research.

Full Correlation of the Resistance in Time

From this point on, we assume the uncertainty @ rifsistance to be purely epistemic. In other
words, it has a time-invariant but unknown and,sthuncertain value. Theoretically, this type of
uncertainty can be eliminated with sufficient measwents or gathering of information, which,
however, is often not possible in practice.

This assumption seems reasonable and is very corfonstrength properties of defenses, as long
as no time-dependent behavior like deterioraticcoissidered. For example, soil properties arezedli
once during the deposition of the respective stiitey could be known deterministically, if we just
carried out enough soil investigation. Neverthelesstreat them as random variables to cope with ou
limited knowledge, because “complete” soil inveatign is not practicable. Furthermore, from a risk
analysis or decision theoretical point of view,réhes no difference between “true” inherent variapi
or randomness and uncertainty arising from lackradfwledge or epistemic uncertainty (Faber et al.
(2007)).

Now, since the resistance is a one time-realizatiom also need only one random variaRldo
describe it (i.e., indekis not needed anymore). Notice that this is edenteto having full correlation
of the resistance in timep(R;, R;) = 1). Furthermore, the effect of updating the resistawith a
survived load is, in fact, truncating the distribuat Intuitively, this is easily understood, beaayi$ the
resistance has an unknown value and no inheredbnamess is involved, this value must surely be
greater than the observed load. This is illustrated-igure 1, where R’ represents the posterior
distribution of R and the shaded area shows thistrdmlited probability mass.

N S observed load S

ey

R, S
Figure 1: Re-distribution of Probability Mass for O bserved Loads and Knowledge Uncertainty in Resistan ce

Bayesian Theory provides an explanation for thisotf too. The likelihood function d® may be
formulated as:

L(R) = P(F|35) = P(R> §) = 1[R > §] (12)

Notice that the likelihood function directly works R, not on parameters of a distributionRof
because we assurio have a real value, not to be a random prodégssfunction assumes value 1 for
R greater thais and O elsewhere. Multiplying this function witretprior distribution and normalizing
has exactly the effect of truncating the distribatas illustrated in Figure 1.

This effect has another computational advantagew,Nonly the maximum observed load
contributes to the updating. That implies that the expected (future) development P(Fy)
considering the (extreme value) distribution of theaximum load per time interval suffices.
Consequently, the posterior probability of failuas,compared to equation (9), simplifies to

P(FL| N FJ) = P(R < Sl‘ ﬂ{R > max[gj]}) = /FR|R>max[§j](Si)fS(Si)(ls)

where the notatiolF'r - ; stands for a c.d.f. of R, where the left tail tsfdistribution is truncated
ats. Consequently, the expected (future) conditiomabpbility of failure becomes:



COASTAL ENGINEERING 2010 5

P(Fy|Fy_1) = / Frinss(sy) fsx1(s) fs(sn) ds dsy  (14)

where fg.  (s) is the p.d.f. of the maximum load iN-1 years. According to Eq. (6), this
conditional probability needs to be multiplied withe probability of survival of the previous year i
order to obtairP(Fy). However, if the prior probability of failure isWw, the survival terms are close
to 1 andP(Fy) can be approximated by Eq. (14) with reasonabteracy.

EXAMPLES

Single Parameter Updating (Z=R-S)

This example shows how for the simple problenZeR-S Bayes’ theorem can be useful to deal
with situations where the uncertainty in the resist consists of both, lack of knowledge and inftere
variability. One possibility of dealing with this ito have a distribution of the mean vapp of a
Normal-distributed variabl® accounting for the reducible part of the uncettaimhile the standard
deviation o is assumed constant representing the non-reduilde inherent) uncertainty. The
properties of our numerical example are:

+ prior distribution of the mearug ~ N(u,0) = N(5,1)

+ standard deviatiorocr = 1

+  prior (Bayesian) distribution of the resistanR ~ N(p, /0% + 0%) = N(5,/2)
* load distribution:S ~ N(ug,05) = N(2,1)

e prior reliability index and probability of failure:

B=pz/oz=p/\/o?+0%+0%=5//3=173 = P(F)=3%(-1.73) =4.2-1072

A practical example, where such a distinction betweeducible and non-reducible uncertainty may
be applicable, is the characterization of a sadlpprty within a site. A typical value for the withsite
variability is often known, while for a new, lesgpdored site the mean value is estimated based on a
limited number of samples.

0.4

Vs T

—— f*(R), prior
P T 1A [m— £ ““(R), posterior 1

— S*, observed load

Figure 2: The Effect of Including a Survival Observ  ation in de Resistance Distribution

Figure 2 shows the effect of updating the (mearuejalof the resistance based on an observed
(survived) load ols = 4. Clearly, in this case there is no truncatingha prior distribution, rather a
shift to the right narrowing of the distributionh& reason is that there is non-reducible unceytaint
involved, the result of which is that also our afvagion is not as sharp as it would be with onlyklaf
knowledge.

The likelihood function ofur (i.e., the updated parameter) contesss the non-reducible part of
the uncertainty. Letting its value approach zerq. @5)), illustrates the effect explained abovhe T
distribution is effectively truncated:
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lim <I><—S_“R> —®(—00) =0 ifpp<3s

~ os—0 (oS
L(pg) = P(R > S|ugr) = S—un (15)
lim & ——— | =P (+o0)=1 ifpp>35
ogs—0 g

Figure 3 illustrates the effect of updating thestsce on the posterior probability of failure degding

on the magnitude on the loading event. In termprobability of failure we are usually interested in
changes of orders of magnitude. For this speciKengle, the observed load would have to be very
high to have such an impact. For example, the jriobability of failure for the observed event (lHig

2) was approximately 24% and the probability ofesl only decreased by a factor of two. For lower
prior probabilities of failure, the impact is udyaiigher as we will see in other examples.

o] 1 2 3 4 5 & 7 g 9 ]%6
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Figure 3: Posterior Probability of Failure as Funct  ion of the Observed Survived Load
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Figure 4: lllustration of schematic geometry and pa rameters for heave and piping

Multiple Parameter Updating (Piping: Bligh's Rule)

This example illustrates the effects of updatingltiple parameters for the failure mechanism with
realistic load and resistance values. To this éedpiping model first established by Bligh (1918) i
adopted (see Figure 4). The limit state functio8K) for Bligh's rule is given by:

Zy=L—mg C(h— hy — 0.3d) (16)
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with L piping length [m]

C Bligh’'s Creep parameter [-] (erosion resistance)
me factor for model uncertainty associated wCh

h water level (main load) [m+NAP]

hy landside water level [m+NAP]

d thickness of aquitard at exit point [m]

The formulation is similar to Steenbergen and Vrenvelder (2003), re-written in a linear form. The
following assumptions hold:

« If the maximum head difference exceeds the critiead difference, failure occurs (i.e., time-
dependent effects in the piping mechanism are ghsded).

« No cumulative effect, i.e. there is no cumulatieenge or “fatigue” effect.

« Piping can occur directly, i.e. there is no dep@&wcdeon other mechanisms such as uplift. This
assumption is realistic in the absence of blardkggrs or for thin blanket layers with very low
uplift resistance.

The modeling of uncertainties in piping resistafmethis study is adopted from the FLORIS project
(VNK) in the Netherlands (Rijkswaterstaat (2003))e distribution parameters are summarized in
Table 1.

Table 1: Prior distributions (Piping: Bligh’s Rule)

(NAP = reference level: Nieuw Amsterdam Peil (mean sea level))

Variable Distribution Parameters / moments

C [ Lognormal M =15.0 0c=20
mc [] Normal Hme =10 Ome=0.15
L [m] Normal L1, =30.0 0r,=3.0

h [m+NAP] Gumbel « =8.27

hy, [m+NAP] deterministic hy=75

d [m] deterministic d=0s8

In the subsequent examples it is assumed thatexr Veatel with a 100 year return period/vf= 10.14
[m+NAP] has been observed and no piping failuredeasirred.

For sake of illustration, we consider differenteam terms of updating uncertainties. The firsteca
is artificially simplified, onlyC is considered uncertain on the resistance &idadm, are considered
deterministic with their respective mean valuesoider to be able to compare the cases, the sthndar
deviation ofC is chosen as.=3.0, which can be shown is approximately equivialerthe combined
distribution ofm:*C with their original parameters from Table 1. Theertainty inC is assumed to be
reducible. The likelihood function @& can be formulated as:

L(C) = P (L —me C (h—hy — 0.3d) > 0|0) 17)

C being the only random variable, the likelihooddtion is deterministic may be re-written as:

P(Z,>0/C)=1 it C<C.

L(C) = { P(Z,>0[C)=0 ifC>C. ()

with  C. = L/(h— hy — 0.3 % d)= critical Bligh parameter [-]

In other words, the survival ¢h has proven thaf must be smaller tha@.. Figure 5 shows the joint
p.d.f. and the limit state (Z0) in h-C-space. The probability mass aboveGhdine needs to be re-
distributed below that lineQ; < 12.51).

Figure 6 shows the (truncated) posterior distrdoutiof C and the updated fragility curve
(P{Z, < 0|h}).



8 COASTAL ENGINEERING 2010

f(h,C

12
h [m+NAP]

Figure 5: Joint p.d.f. and Limit state in h-C-Space (Piping: Bligh's Rule, only C uncertain)
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(a) Prior and posterior distribution of C (b) Prior and posterior fragility curves

Figure 6: Updated p.d.f. of C and Updated Fragility =~ Curve (Piping: Bligh's Rule, only C uncertain)

Figure 6 shows the (truncated) posterior distrioutiof C and the updated fragility curve
(P{Z, < 0|h}), together with an example of a short term watel prediction with expectation
E[hlg = 9.5 [m+NAP] and standard prediction erroray|. = 0.3 [m] (typical for about 3 days lead
time on rivers) in order to appreciate the impddhe updating procedure on short-term predictions.

The probability of failure, using the water levattdbution of the yearly maxima (long-term),
decreases by a factor of 5. The effect on the gbart reliability with the scenario of a water léve
prediction as in Figure 6 is even more significant.

Table 2: Prior and posterior probabilities of failu re
(Piping: Bligh’s Rule, only C uncertain)
with f(C) with f(Cle)
with f(h) (long-term) Probability of failure 3.1E-2 6.1 E-3
Reliability index 1.86 2.51
with f(h|&) (short-term) Probability of failure 2.8E-1 4.1 E-3
Reliability index 0.59 2.63

In the second case, model uncertainty is adde@dmseaducible uncertainty, whilst the piping length

is still treated deterministicall\C still being the only random variable, the likeldtbfunction remains
the same as Eq. (17). However, in this case, at $éochastic function, sinag; is uncertain. Figure 7
shows that the effect of updating is less tharhénrevious case, since no truncating occurs argimor
That is also expressed in the impact on the prdibabf failure being much less. The same holds for
the fragility curve and the short-term reliabil{gsee Table 3).
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Table 3: Prior and posterior probabilities of failu re
(Piping: Bligh’s Rule, C and m ¢ uncertain)
with f(C) with f(Cle)
with f(h) (long-term) Probability of failure 3.1E-2 1.8E-2
Reliability index 1.86 2.09
with f(h|&) (short-term) Probability of failure 2.8E-1 14E-1
Reliability index 0.59 1.08
1 = ; 1.4 ;
ool ] :‘ o prior | P(z<0lh)
| \‘ ————- likelihood 120 P(Z<0|h,g)
0.8F------ Tl posterior N N f(hle)
0.7 ! “ ---------- posterior, fitted 1””*‘””:””*7 7777777 a
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(a) Prior and posterior distribution of C (short-term) (b)  Prior and posterior fragility curves (long-term)

Figure 7: Updated p.d.f. of C and Updated Fragility = Curve (Piping: Bligh's Rule, C and m . uncertain)

In the third caseC andL are considered uncertain, whilst model uncertaistgisregardednf. = 1).
The aggregate uncertainty C' and L is comparable to the total resistance uncertaimtiie previous
cases. Furthermore it is considered reducible. €nrently, the likelihood function is two-dimensicina

L((C,L) = P (L —me C(h— hy —0.3d) > 0|C, L) (19)

Without (inherent) model uncertainty, the likeliftbfunction is again deterministic, defining an
“impossible” parameter region. Figure 8 illustraties truncating of the joint p.d.f..

30

30

f(L.C)
7=0 | h"|]

f(L,Cle)

(a) Prior joint p.d.f. (b)  Posterior joint p.d.f.

Figure 8: Updated joint p.d.f. of C and L (Piping: Bligh's Rule, C and L uncertain)
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The posterior marginal distributions (in generfx(z) = fy Ixy(z,y)dy), of C and L differ
significantly from the prior ones (see Figure 9)heT posterior marginal distributions are not
independent as opposed to the prior distributidihsis either the full joint posterior p.d.f. needsbe
used in subsequent analyses or an appropriatesespiation of the correlation structure.

In the current analysis, the posterior reliabilitgalyses have been carried out using numerical
integration of the joint p.d.ff(CvL|€)(fourth column in Table 4). In order to demonstrtte error
using independent marginal distributions, theseltesre given in the last column of the same table

(f(Cle)f(Ll€)).
045——m——————————————————— 0.25 , ,
| | | |
I I prior I I prior
0.4 posterior : : posterior
i ! [ R i .
035 posterl?r. fitted | | 0.2F--- —: - posterior, fitted
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0.3 e
a — - _. 015
8 025 {pqs- 126,05,=11--1 3
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|
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|
|
0 v 0
25 30 15

@ f(Cle) ® f(Lle)

Figure 9: Posterior Marginal Distributions of C and L (Piping: Bligh's Rule, C and L uncertain)

It is remarkable that the posterior probabiliti€sfailure, i.e. the effects of updating the resise
variables, are practically the same as in casely © uncertain). Apparently, for the same amount o
aggregate uncertainty it is the degree of reduciblertainty involved that determines the effectlun
probability of failure. The same holds for the po#lr fragility curve and the effect on the shantrd
reliability.

Table 4: Prior and posterior probabilities of failu re
(Piping: Bligh’s Rule, C and L uncertain)
with f(C) with f(Cle) with f(Cle) with f(Cle) f(L]e)
with f(h|&) (long-term) Probability of failure 3.1E-2 6.4 E-3 7.5E-3
Reliability index 1.86 2.49 2.43
with f(h|&) (short-term) Probability of failure 2.8 E-1 5.5 E-3
Reliability index 0.59 2.54

In the last case, all random variables are treaseghcertain (specifications in Table 1). Noticat tine
total uncertainty is different and that the resu#not be compared to the previous cases directly
anymore. The likelihood function is the same ath@previous case (Eq. (19)), however, in this dase
is a stochastic function. In the previous caselikedihood function distinguished sharply betwesamo
and one probability, in the current case it is aati function (see Figure 10).
The posterior marginal distributions and theiristatal moments are displayed in Figure 11. Neither
the shift in mean value nor the decrease in vagas@s significant as in the previous case. Theeno
uncertainty weakens the updating effect, as alrsadyn in the second case.

The effect on the probability of failure (see Tab)eand the fragility curve is similar to the sedon
case, even though the two cases are not perfemthparable anymore due to the difference in total
(aggregate) prior uncertainty.
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L [m]

(a) Likelihood

Figure 10: Contours of the Likelihood and Posterior

30

11

20

= 15
O

10

|
|
|
5l
|
1
|

f(L,C)

f(L,Cle)

(Piping: Bligh's Rule, all variables uncertain)
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Table 5: Prior and posterior probabilities of failu re
(Piping: Bligh’s Rule, all variables uncertain)

T

prior
posterior

with f(C) with f(Cle)
with f(h) (long-term) Probability of failure 3.7E-2 1.6 E-2
Reliability index 1.79 2.13
with f(h|&) (short-term) Probability of failure 29E-1 11E-1
Reliability index 0.54 1.20
045 T T T 025 T I
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0351 L [ reemmne posterior, fitted | | 0.2 ! !
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Figure 11: Posterior Marginal Distributions of C an

d L (Piping: Bligh's Rule, all variables uncertain)
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Time Series (Piping, simplified: Z ,=Hc—H)

This example is concerns the effect of expectedivalrof future loadings on the probability of
failure. Again piping (under-seepage) is used asxample. A simplified piping model is adopted, in
which all resistance-related uncertainties are eggged in the critical head differenide and the load-
related uncertainties in the predicted head diffeeeH. The distributions and parameters in this
example have been derived from analyses with thee raophisticated Sellmeijer (1988) formula, a
model physical process-based model for determithiagritical head difference.

The main uncertainty in the load stems from theswtgvel, the extreme value distribution of which
is commonly described by a Gumbel distribution fearly maxima):

Fy(h) = exp [— exp (—h ;3 O‘)] (20)

Using the fact thail=exp(In(N)) the distribution of the maximum M years can be written as:

R R e

Thus, Fy, (hy) is also Gumbel-distributed with parametay = a+ fIn(N) and Sy = 5. In
this example, the Gumbel distribution is not onppked for the water level but also for the head
difference H=h—h,. Table 6 provides three realistic parameter setspiping s in the Netherlands
derived from location-specific design water levéldHW), which correspond with region-specific
protection levels expressed in terms of exceedamobabilities Fe, see Rijkswaterstaat (2007)),
combined with the so-called decimate height (Rijkswaterstaat (2008)).

Table 6: Typical Hydraulic Load Conditions for Pipi ng in the Netherlands (normalized to mean sea level )

Location MHW-h 1/Fexc hdec B a as Oso

[m] [1/yr] [m]

Rivers 3.0 1,250 0.70 0.304 0.83 1.05 1.35
(upstream)

Rivers 5.0 4,000 0.35 0.152 3.74 3.85 4.00
(downstream)

Coast, 5.5 10,000 0.75 0.326 2.50 2.73 3.05
estuaries

The (prior) resistance is assumed Normal-distridbft@aussian) with a coefficient of variation of
about 20 % and reducible (i.e., lack of knowledgéy)p Cons~equently, the updated distribution is a
Truncated Normatlistribution with the maximum observed lohy as lower bound (see Eq. ).

hy — i,
oy = b, D 22

c

7 1 hc - .
fi.(lelhe > hy) = ——¢ {T“H} / (1 - ®

In the absence of an analytical expression we denthe cumulative distribution as
Fu, (helhe > hy). For the present example, the mean values of ttieatthead difference per load
parameter set (Table 6) have been chosen such,titaprior probability of failure equals the
exceedance frequencP(F;) = F.,.). Figure 12 shows the expected development ogbtbkability of
failure in time. The difference in decreasePgF,) between the different parameter sets is remark#ble
is speculated that the main differences lie inrtHative contributions of load and resistance wttital
uncertainty and, furthermore, in the level of thelability of failure (i.e., high prior reliabilitgives
high relative decrease). However, a thorough aisabfsthese differences is beyond the scope of this
paper. The decrease i{F) in 50 years is between a factor 2 and 100. Corsglyuthe difference in
terms of reliability index is highest for the “Rige(downstream)” case with about 1.1.
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Figure 12: Expected Development of Probability of F  ailure in Time (Piping, Zp=Hc—H)

Usually, acceptable probabilities of failure in id@scodes or other requirements to the safety of
structures are risk-motivated. An acceptable riskyrbe derived from cost-benefit considerations,
individual or group risk or other criteria. In angse, the derived criterion means that certain dama
may only occur with an acceptably low probabilithis probability is usually expressed for a refeeen
period of time, often per year or per lifetime défined per lifetime or per maintenance or inspecti
period, the expected decrease of probability dfifaiin time can be taken into account. In thaec#se
average oP(F) in the reference period is of interest.

Figure 13 shows that the time-averaged probahilitfailure is considerably lower than the prior.
For a typical inspection period of 10 years, thiéedénces are between factor 1.3 and 6. For adjpic
design lifetime of 50 years the factor are everghbyibetween 2 and 20.

5 . . H .
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=3 - : : : :
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T - ]

- --| ——— Rivers {upstream) ; —— Rivers {upstream)
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--------------- — - —  Coast, Estuaries E — - — - Coast, Estuaries

& H H
10 : : . 2 2 : 2 : 2
10 20 an 40 a0 10 20 30 40 a0
N years [yi] year i [y

Figure 13: Time-Averaged Expected Probability of Fa ilure in Time (Piping, Zp=Hc-H)

Of course, for using the average value, certainrapions need to hold, for example, that the damage
caused by the unwanted event is insensitive teteat intensity (i.e., the damage by a low-freqyenc
event is not much different to the damage by amtewéh slightly lower frequency) etc. The analysis
above only demonstrates the potential of taken updating effects into account, for real-life
applications, all explicit and implicit assumptiamsed to be checked carefully.
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DISCUSSION
The considerations and results provided above Hamd to the following conclusions and

recommendations:

1. Survived historical loadings are valuable inforraatfor the reliability of a flood defense, actually
for any kind of structure, especially, if large entainties of the resistance dominate the prokgbili
of failure. So far, this source of information iartily used, at least not in a consistent reliapilit
analysis and risk management framework.

2. The present article demonstrates how informatiorhigtorical and future survived loads can be
used to update the probability of failure by meahBayesian Posterior Analysis.

3. There are basically two ways to update probalslitié failure. One is by updating the basic
random variables and repeating the reliability gsialfor re-determinindf;. The other makes use
of the definition of conditional probability andetcorrelation between the historically observed
event and the future event to be assessed. Bathtéethe same answers. However, for practical
application, especially for high-dimensional prabse the second option is computationally less
demanding, hence recommended.

4. The examples demonstrate that the decrease oflglibpaf failure can be orders of magnitude.

5. Survival information may be taken into accountdecision-making in inspection and maintenance
or in design for newly built structures. In bothses, using the information leads to cost-savings
either in terms of lower construction cost or imie of lower risk. The degree of the decrease in
probability of failure and, therefore, in cost implem-dependent.

6. Notice that so far all calculations have been edrout mainly by means of numerical integration
techniques. The last case is a four-dimensionablpne and requires already considerable
calculation effort and computer memory. Higher disienal problems might require the use of
alternative techniques, such as Markov Chain M@atdo sampling.
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