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REASSESSING RELIABILITY BASED ON SURVIVED LOADS 

Timo Schweckendiek1 

The reliability of flood defenses is often dictated by large uncertainties in the hydraulic loading and the structural 
resistance. Additional information decreases uncertainty, however, acquiring it is often costly. One source of 
information, even though in many cases readily available, is hardly used – survived loads. This article shows how 
data on survived load conditions can be incorporated in reliability analysis by means of Bayesian techniques. The 
theory is illustrated by simple and realistic examples. In contrast to other sources of information, reassessing 
structures using survived load data always leads to higher reliability or lower probability of failure. Furthermore, 
attention is given to the expected development of failure in time. This may be relevant for situations, where the safety 
requirements of a structure are stated in terms of a design or inspection period. For both, re-assessing reliability based 
on (one time) survived loads as well as the expected increase of reliability in time, the examples show significant 
impact. Use of this knowledge may, consequently, safe cost of construction or reinforcement. 

Keywords: flood defenses; reliability; Bayesian updating; failure mechanisms; piping; survived loads 

INTRODUCTION 
Breaching of flood defenses such as dikes can lead to severe inundations and substantial damage in 

the hinterland. Therefore, not only the height of a dike is important but also its structural resistance 
against other, mainly geotechnical failure mechanisms like slope failure or piping (also called under-
seepage). As opposed to the easily measurable geometry (including the height), geotechnical resistance 
properties are hard to determine, resulting in large uncertainties. These uncertainties regarding the 
properties of the dike body and its foundation often dominate the probability of failure. 

Therefore, every bit of information on the reliability of a flood defense is valuable. One source of 
information is hardly used: survived loadings. Survived loadings are very much like incomplete load 
tests, except they are neither intentional nor under controlled conditions. However, as long as the 
relevant parameters were measured, the reliability or probability of failure can be updated using these 
data. 

This paper not only shows how the probability of failure can be updated by applying Bayesian 
techniques with historical survival data (posterior analysis), it also treats how we can determine the 
expected increase of reliability in time (pre-posterior analysis). The theory is illustrated by realistic 
numerical examples of the piping failure mechanism. 

The next chapter provides the mathematical background of reliability theory and Bayesian 
Updating. After that, simple numerical examples provide an idea of the impact of incorporating survival 
information. Subsequently, realistic numerical examples illustrate the effects that can be expected 
applying the presented techniques in practice. 

(RE)ASSESSING RELIABILITY 
This chapter recapitulates the basic reliability theory necessary for understanding the Bayesian 

techniques explained subsequently. It ends with considerations on the expected development of the 
probability of failure in time. 

Prior Probability of Failure 
The general expression for the probability of failure is given by: 

  (1) 

where  limit state function 
   probability density function (p.d.f.) of the vector or random variables  
   indicator function 
 

The integral on the right-hand side can, if analytical solution is not tractable, be solved numerically by 
well-known techniques, such as the First-Order Reliability Method (FORM, Hasofer and Lind (1974)), 
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Monte-Carlo simulation (MCS) or Numerical Integration (NI). The analyses in this paper mainly rely 
on numerical methods. 

If carried out with prior probability distributions of the random variables, the result may be called 
prior probability of failure, expressing that no additional information than the initially available has 
been incorporated yet. 

Posterior Probability of Failure 
The posterior (or updated) probability of failure can be determined by applying Bayes’ theorem 

(Bayes (1763)) in basically two different fashions, by updating the basic random variables and repeating 
the reliability re-determining Pf, or by directly updating Pf making use of the definition of conditional 
probability and the correlation between the historically observed event and the future event to be 
assessed. 

For updating the random variables, first their parameters are updated using Bayes’ theorem: 

  (2) 

where  vector of distribution parameters of random variables  ( ) 
   evidence (information to be incorporated) 
   probability density function of  
   likelihood function of the parameters ( ) 
   normalization constant (to ensure proper p.d.f.) 
 

Integrating out the uncertainty in the updated parameters gives the updated distribution of the random 
variables themselves: 

  (3) 

Using this updated distribution of the random variables in Eq. (1), gives the posterior probability of 
failure. The same is achieved by applying the definition of conditional probability: 

  (4) 

where  describes the historical survival event, while  still describes the future 
failure event to be assessed. This implies that  now needs to include the random variables with the 
information of the historical event. such as information on the observed (deterministic or uncertain) 
loading conditions. 

Since in most cases analytical solutions of the above are intractable or at least cumbersome, again, 
techniques like MCS or NI can be applied. Alternatively, first-order system reliability methods as 
proposed by Hohenbichler and Rackwitz (1983) can be used in combination with FORM and are often 
more insightful. 

Notice that in Eq. (4) the same limit state equation  for the survival event does not necessarily 
need to be the same failure mechanism as . In fact, any event correlated with the failure event to be 
predicted provides additional information, be it failure or survival regarding another mechanism or 
measurements or monitoring or relevant properties. The stronger the correlation, the more significant 
the impact of updating is. The condition, though, is that the information needs to be expressed as an 
inequality (i.e., , see Ditlevsen (1996)). 

Expected Development of Probability of Failure in Tim e (“Pre-posterior”) 
So far, we have treated updating with information of historical or past events. The information may 

either be deterministic (e.g., measurements with negligible error) or uncertain, the method can cope 
with both. But what about the future? We already know that the flood defense will experience loadings 
in the future, too, and probably also extreme ones. In many cases we even have statistics for these 
loadings, such as extreme value distributions of the annual maxima of river discharges or water levels. 
Technically, updating a probability of failure with an uncertain future loading is no different than with 
an uncertain loading in the past. That enables us to analyze the expected development of the probability 
of failure in time. 

In order to develop the necessary mathematics for this purpose, we first introduce the following 
shorthand notation for failure and survival events: 
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  (5) 

Furthermore, a time index is introduced.   means failure in year i, or . The index used for 
the vector of random variables  means that, since our state of knowledge of the random variables 
changes, their probability distribution might differ from year to year. Thus in year i we use the 
probability distribution that includes all the information included up to year i-1. 

Consequently, the posterior probability of failure in year i, given survival in year j (j<i ) may be 
written as . The expected probability of failure in year i depends on the conditional (updated) 
probability of failure in that year and the probability of survival in the previous years: 

 (6) 

Notice that, even though all past events influence , the state of knowledge of year i-1 is 
sufficient to determine , a sort of Markov-property that is very practical for computational 
implementation. 

LOAD VS. RESISTANCE (Z=R-S) 
In order to illustrate posterior as well as pre-posterior analysis, we first look at the simple classical, 

but insightful, example of one load and one resistance variable with the limit state function  
(i.e., failure is ). In all the subsequent cases, we assume the load  to be i.i.d. in time 
with p.d.f. .  

General Expressions 
Since our state of knowledge of  changes in time,  is the random variable representing our state 

of knowledge in year . Thus, the probability of failure in year  may be written as: 

  (7) 

Let a historical survival event be denoted as  (i.e., non-failure in year j), in which  is the 
observed load. Then, the posterior probability of failure in year i (i>j )may be expressed as: 

  (8) 

where  is the updated fragility curve (probability of failure, conditional on the load) curve. For 

more than one, say M survival events, the expression becomes: 

  (9) 

Similarly, we may evaluate the expected development of the probability of failure in time by 
considering the effect of the uncertain value of the observed load: 

  (10) 

Notice that in Eq. (10), the conditional probability of failure in a year, given survival of the 
previous year, the uncertainty of the load is integrated out twice, once accounting for the uncertainty in 
the future loading and once accounting for the uncertain effect of updating with the yet unknown load in 
year i.  

Applying the law of total probability we need to multiply still with the probability of survival of 
year i in order to obtain the “expected” probability of failure in year i+1  (compare Eq. (6)). Thus, for a 
time series of the (expected) probability of failure from year 1 to N, we would need to consider the 
following integral: 

 (11) 
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where  is the joint p.d.f. of the resistance and load variables  and  in years . 
Notice that not only the resistance properties are mutually dependent in subsequent years, but due to the 
updating based on survival, also the resistance becomes dependent of the loading in previous years. 
Solving the integral in Eq. (11) for cases without special (in)dependence assumptions of the resistance 
in time (i.e., ), is not trivial and left for further research. 

Full Correlation of the Resistance in Time 
From this point on, we assume the uncertainty in the resistance to be purely epistemic. In other 

words, it has a time-invariant but unknown and, thus, uncertain value. Theoretically, this type of 
uncertainty can be eliminated with sufficient measurements or gathering of information, which, 
however, is often not possible in practice. 

This assumption seems reasonable and is very common for strength properties of defenses, as long 
as no time-dependent behavior like deterioration is considered. For example, soil properties are realized 
once during the deposition of the respective strata. They could be known deterministically, if we just 
carried out enough soil investigation. Nevertheless, we treat them as random variables to cope with our 
limited knowledge, because “complete” soil investigation is not practicable. Furthermore, from a risk 
analysis or decision theoretical point of view, there is no difference between “true” inherent variability 
or randomness and uncertainty arising from lack of knowledge or epistemic uncertainty (Faber et al. 
(2007)).  

Now, since the resistance is a one time-realization, we also need only one random variable  to 
describe it (i.e., index i is not needed anymore). Notice that this is equivalent to having full correlation 
of the resistance in time ( ). Furthermore, the effect of updating the resistance with a 
survived load is, in fact, truncating the distribution. Intuitively, this is easily understood, because, if the 
resistance has an unknown value and no inherent randomness is involved, this value must surely be 
greater than the observed load. This is illustrated in Figure 1, where R’ represents the posterior 
distribution of R and the shaded area shows the redistributed probability mass. 

 

 
Figure 1: Re-distribution of Probability Mass for O bserved Loads and Knowledge Uncertainty in Resistan ce 

Bayesian Theory provides an explanation for this effect, too. The likelihood function of R may be 
formulated as: 

  (12) 

Notice that the likelihood function directly works on R, not on parameters of a distribution of R, 
because we assume R to have a real value, not to be a random process. The function assumes value 1 for 
R greater than  and 0 elsewhere. Multiplying this function with the prior distribution and normalizing 
has exactly the effect of truncating the distribution as illustrated in Figure 1. 

This effect has another computational advantage. Now, only the maximum observed load 
contributes to the updating. That implies that for the expected (future) development of  
considering the (extreme value) distribution of the maximum load per time interval suffices. 
Consequently, the posterior probability of failure, as compared to equation (9), simplifies to 

 (13) 

where the notation  stands for a c.d.f. of R, where the left tail of its distribution is truncated 
at . Consequently, the expected (future) conditional probability of failure becomes: 
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  (14) 

where  is the p.d.f. of the maximum load in N-1 years. According to Eq. (6), this 
conditional probability needs to be multiplied with the probability of survival of the previous year in 
order to obtain . However, if the prior probability of failure is low, the survival terms are close 
to 1 and  can be approximated by Eq. (14) with reasonable accuracy. 

EXAMPLES 

Single Parameter Updating (Z=R-S) 
This example shows how for the simple problem of Z=R-S Bayes’ theorem can be useful to deal 

with situations where the uncertainty in the resistance consists of both, lack of knowledge and inherent 
variability. One possibility of dealing with this is to have a distribution of the mean value  of a 
Normal-distributed variable R accounting for the reducible part of the uncertainty, while the standard 
deviation  is assumed constant representing the non-reducible (i.e., inherent) uncertainty. The 
properties of our numerical example are: 
• prior distribution of the mean:  
• standard deviation:  
• prior (Bayesian) distribution of the resistance:  

• load distribution:  
• prior reliability index and probability of failure: 
         

A practical example, where such a distinction between reducible and non-reducible uncertainty may 
be applicable, is the characterization of a soil property within a site. A typical value for the within-site 
variability is often known, while for a new, less explored site the mean value is estimated based on a 
limited number of samples. 

 
Figure 2: The Effect of Including a Survival Observ ation in de Resistance Distribution 

Figure 2 shows the effect of updating the (mean value) of the resistance based on an observed 
(survived) load of . Clearly, in this case there is no truncating of the prior distribution, rather a 
shift to the right narrowing of the distribution. The reason is that there is non-reducible uncertainty 
involved, the result of which is that also our observation is not as sharp as it would be with only lack of 
knowledge. 

The likelihood function of  (i.e., the updated parameter) contains , the non-reducible part of 
the uncertainty. Letting its value approach zero (Eq. (15)), illustrates the effect explained above. The 
distribution is effectively truncated: 
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 (15) 

Figure 3 illustrates the effect of updating the resistance on the posterior probability of failure depending 
on the magnitude on the loading event. In terms of probability of failure we are usually interested in 
changes of orders of magnitude. For this specific example, the observed load would have to be very 
high to have such an impact. For example, the prior probability of failure for the observed event (Figure 
2) was approximately 24% and the probability of failure only decreased by a factor of two. For lower 
prior probabilities of failure, the impact is usually higher as we will see in other examples. 

 
Figure 3: Posterior Probability of Failure as Funct ion of the Observed Survived Load 

 

Figure 4: Illustration of schematic geometry and pa rameters for heave and piping 

 

Multiple Parameter Updating (Piping: Bligh’s Rule) 
This example illustrates the effects of updating multiple parameters for the failure mechanism with 
realistic load and resistance values. To this end the piping model first established by Bligh (1910) is 
adopted (see Figure 4). The limit state function (LSF) for Bligh‘s rule is given by: 

  (16) 
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with  piping length [m] 

 Bligh’s Creep parameter [-] (erosion resistance) 

  factor for model uncertainty associated with  

 water level (main load) [m+NAP] 

 landside water level [m+NAP] 

  thickness of aquitard at exit point [m] 
The formulation is similar to Steenbergen and Vrouwenvelder (2003), re-written in a linear form. The 
following assumptions hold: 

• If the maximum head difference exceeds the critical head difference, failure occurs (i.e., time-
dependent effects in the piping mechanism are disregarded). 

• No cumulative effect, i.e. there is no cumulative damage or “fatigue” effect. 
• Piping can occur directly, i.e. there is no dependence on other mechanisms such as uplift. This 

assumption is realistic in the absence of blanket layers or for thin blanket layers with very low 
uplift resistance. 

The modeling of uncertainties in piping resistance for this study is adopted from the FLORIS project 
(VNK) in the Netherlands (Rijkswaterstaat (2005)), the distribution parameters are summarized in 
Table 1. 
 

Table 1: Prior distributions (Piping: Bligh’s Rule)  

(NAP = reference level: Nieuw Amsterdam Peil (mean sea level)) 
Variable Distribution Parameters / moments  

 [-] Lognormal  = 15.0  = 2.0 
 [-] Normal  = 1.0  = 0.15 

 [m] Normal  = 30.0  = 3.0 

 [m+NAP] Gumbel  = 8.27 

 [m+NAP] deterministic  = 7.5 

 [m] deterministic  = 0.8 

 

In the subsequent examples it is assumed that a water level with a 100 year return period of  = 10.14 
[m+NAP] has been observed and no piping failure has occurred. 

For sake of illustration, we consider different cases in terms of updating uncertainties. The first case 
is artificially simplified, only C is considered uncertain on the resistance side, L and mc are considered 
deterministic with their respective mean values. In order to be able to compare the cases, the standard 
deviation of C is chosen as σc=3.0, which can be shown is approximately equivalent to the combined 
distribution of mc*C with their original parameters from Table 1. The uncertainty in C is assumed to be 
reducible. The likelihood function of C can be formulated as: 

  (17) 

C being the only random variable, the likelihood function is deterministic may be re-written as: 

  (18) 

with = critical Bligh parameter [-]  

In other words, the survival of  has proven that C must be smaller than Cc. Figure 5 shows the joint 
p.d.f. and the limit state (Zp=0) in h-C-space. The probability mass above the Cc-line needs to be re-
distributed below that line (Cc < 12.51). 

Figure 6 shows the (truncated) posterior distribution of C and the updated fragility curve 
( ). 
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Figure 5: Joint p.d.f. and Limit state in h-C-Space  (Piping: Bligh's Rule, only C uncertain) 
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(a) Prior and posterior distribution of C (b)   Prior and posterior fragility curves 

 
Figure 6: Updated p.d.f. of C and Updated Fragility  Curve (Piping: Bligh's Rule, only C uncertain) 

Figure 6 shows the (truncated) posterior distribution of C and the updated fragility curve 
( ), together with an example of a short term water level prediction with expectation 

E[h|ε] = 9.5 [m+NAP] and standard prediction error of  = 0.3 [m] (typical for about 3 days lead 

time on rivers) in order to appreciate the impact of the updating procedure on short-term predictions. 
The probability of failure, using the water level distribution of the yearly maxima (long-term), 

decreases by a factor of 5. The effect on the short-term reliability with the scenario of a water level 
prediction as in Figure 6 is even more significant. 
 

Table 2: Prior and posterior probabilities of failu re  
(Piping: Bligh’s Rule, only C uncertain) 

 with f(C) with f(C|ε) 
Probability of failure 3.1 E-2 6.1 E-3 with f(h) (long-term) 
Reliability index 1.86 2.51 
Probability of failure 2.8 E-1 4.1 E-3 with f(h|ε) (short-term) 
Reliability index 0.59 2.63 

 
In the second case, model uncertainty is added as non-reducible uncertainty, whilst the piping length L 
is still treated deterministically. C still being the only random variable, the likelihood function remains 
the same as Eq. (17). However, in this case, it is a stochastic function, since mc is uncertain. Figure 7 
shows that the effect of updating is less than in the previous case, since no truncating occurs anymore. 
That is also expressed in the impact on the probability of failure being much less. The same holds for 
the fragility curve and the short-term reliability (see Table 3). 

 

Cc 
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Table 3: Prior and posterior probabilities of failu re  
(Piping: Bligh’s Rule, C and m c uncertain) 

 with f(C) with f(C|ε) 
Probability of failure 3.1 E-2 1.8 E-2 with f(h) (long-term) 
Reliability index 1.86 2.09 
Probability of failure 2.8 E-1 1.4 E-1 with f(h|ε) (short-term) 
Reliability index 0.59 1.08 
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(a) Prior and posterior distribution of C (short-term) (b)   Prior and posterior fragility curves (long-term) 

 
Figure 7: Updated p.d.f. of C and Updated Fragility  Curve (Piping: Bligh's Rule, C and m c uncertain) 

In the third case, C and L are considered uncertain, whilst model uncertainty is disregarded (mc = 1). 
The aggregate uncertainty in  and  is comparable to the total resistance uncertainty in the previous 
cases. Furthermore it is considered reducible. Consequently, the likelihood function is two-dimensional: 

  (19) 

Without (inherent) model uncertainty, the likelihood function is again deterministic, defining an 
“impossible” parameter region. Figure 8 illustrates the truncating of the joint p.d.f.. 
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Figure 8: Updated joint p.d.f. of C and L (Piping: Bligh's Rule, C and L uncertain) 
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The posterior marginal distributions (in general: ), of C and L differ 

significantly from the prior ones (see Figure 9). The posterior marginal distributions are not 
independent as opposed to the prior distributions. Thus either the full joint posterior p.d.f. needs to be 
used in subsequent analyses or an appropriate representation of the correlation structure.  

In the current analysis, the posterior reliability analyses have been carried out using numerical 

integration of the joint p.d.f. (fourth column in Table 4). In order to demonstrate the error 
using independent marginal distributions, these results are given in the last column of the same table 
( ). 
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Figure 9: Posterior Marginal Distributions of C and  L (Piping: Bligh's Rule, C and L uncertain) 

It is remarkable that the posterior probabilities of failure, i.e. the effects of updating the resistance 
variables, are practically the same as in case 1 (only C uncertain). Apparently, for the same amount of 
aggregate uncertainty it is the degree of reducible uncertainty involved that determines the effect on the 
probability of failure. The same holds for the posterior fragility curve and the effect on the short-term 
reliability. 

 
Table 4: Prior and posterior probabilities of failu re  
(Piping: Bligh’s Rule, C and L uncertain)  

 with f(C) with f(C|ε) with f(C|ε) with f(C|ε) f(L|ε) 
with f(h|ε) (long-term) Probability of failure 3.1 E-2 6.4 E-3 7.5 E-3 
 Reliability index 1.86 2.49 2.43 
with f(h|ε) (short-term) Probability of failure 2.8 E-1 5.5 E-3  
 Reliability index 0.59 2.54  

 
In the last case, all random variables are treated as uncertain (specifications in Table 1). Notice that the 
total uncertainty is different and that the results cannot be compared to the previous cases directly 
anymore. The likelihood function is the same as in the previous case (Eq. (19)), however, in this case it 
is a stochastic function. In the previous case, the likelihood function distinguished sharply between zero 
and one probability, in the current case it is a smooth function (see Figure 10). 
The posterior marginal distributions and their statistical moments are displayed in Figure 11. Neither 
the shift in mean value nor the decrease in variance is as significant as in the previous case. The model 
uncertainty weakens the updating effect, as already shown in the second case. 

The effect on the probability of failure (see Table 5) and the fragility curve is similar to the second 
case, even though the two cases are not perfectly comparable anymore due to the difference in total 
(aggregate) prior uncertainty. 
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Figure 10: Contours of the Likelihood and Posterior  p.d.f. of C and L  

(Piping: Bligh's Rule, all variables uncertain) 

 
Table 5: Prior and posterior probabilities of failu re  
(Piping: Bligh’s Rule, all variables uncertain) 

 with f(C) with f(C|ε) 
Probability of failure 3.7 E-2 1.6 E-2 with f(h) (long-term) 
Reliability index 1.79 2.13 
Probability of failure 2.9 E-1 1.1 E-1 with f(h|ε) (short-term) 
Reliability index 0.54 1.20 
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Figure 11: Posterior Marginal Distributions of C an d L (Piping: Bligh's Rule, all variables uncertain)  
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Time Series (Piping, simplified: Z p=Hc–H) 
This example is concerns the effect of expected survival of future loadings on the probability of 

failure. Again piping (under-seepage) is used as an example. A simplified piping model is adopted, in 
which all resistance-related uncertainties are aggregated in the critical head difference Hc and the load-
related uncertainties in the predicted head difference H. The distributions and parameters in this 
example have been derived from analyses with the more sophisticated Sellmeijer (1988) formula, a 
model physical process-based model for determining the critical head difference. 

The main uncertainty in the load stems from the water level, the extreme value distribution of which 
is commonly described by a Gumbel distribution (for yearly maxima): 

  (20) 

Using the fact that N=exp(ln(N)), the distribution of the maximum in N years can be written as: 

 (21) 

Thus,  is also Gumbel-distributed with parameters  and . In 
this example, the Gumbel distribution is not only applied for the water level but also for the head 
difference H=h–hb. Table 6 provides three realistic parameter sets for piping s in the Netherlands 
derived from location-specific design water levels (MHW), which correspond with region-specific 
protection levels expressed in terms of exceedance probabilities (Fexc, see Rijkswaterstaat (2007)), 
combined with the so-called decimate height hdec (Rijkswaterstaat (2008)). 

 
Table 6: Typical Hydraulic Load Conditions for Pipi ng in the Netherlands (normalized to mean sea level ) 

Location MHW-h b 
[m] 

1/Fexc 
[1/yr] 

hdec 
[m] 

ββββ    αααα αααα5555 αααα55550000 

Rivers 
(upstream) 

3.0 1,250 0.70 0.304 0.83 1.05 1.35 

Rivers 
(downstream) 

5.0 4,000 0.35 0.152 3.74 3.85 4.00 

Coast, 
estuaries 

5.5 10,000 0.75 0.326 2.50 2.73 3.05 

The (prior) resistance is assumed Normal-distributed (Gaussian) with a coefficient of variation of 
about 20 % and reducible (i.e., lack of knowledge only). Consequently, the updated distribution is a 
Truncated Normal distribution with the maximum observed load  as lower bound (see Eq. ). 

  (22) 

In the absence of an analytical expression we denote the cumulative distribution as 
 For the present example, the mean values of the critical head difference per load 

parameter set (Table 6) have been chosen such, that the prior probability of failure equals the 
exceedance frequency ( ). Figure 12 shows the expected development of the probability of 
failure in time. The difference in decrease of P(Fi) between the different parameter sets is remarkable. It 
is speculated that the main differences lie in the relative contributions of load and resistance to the total 
uncertainty and, furthermore, in the level of the probability of failure (i.e., high prior reliability gives 
high relative decrease). However, a thorough analysis of these differences is beyond the scope of this 
paper. The decrease in P(Fi)  in 50 years is between a factor 2 and 100. Consequently the difference in 
terms of reliability index is highest for the “Rivers (downstream)” case with about 1.1. 
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Figure 12: Expected Development of Probability of F ailure in Time (Piping, Zp=Hc–H) 

Usually, acceptable probabilities of failure in design codes or other requirements to the safety of 
structures are risk-motivated. An acceptable risk may be derived from cost-benefit considerations, 
individual or group risk or other criteria. In any case, the derived criterion means that certain damage 
may only occur with an acceptably low probability. This probability is usually expressed for a reference 
period of time, often per year or per lifetime. If defined per lifetime or per maintenance or inspection 
period, the expected decrease of probability of failure in time can be taken into account. In that case, the 
average of P(Fi) in the reference period is of interest. 

Figure 13 shows that the time-averaged probability of failure is considerably lower than the prior. 
For a typical inspection period of 10 years, the differences are between factor 1.3 and 6. For a typical 
design lifetime of 50 years the factor are even roughly between 2 and 20. 

 

 
 

Figure 13: Time-Averaged Expected Probability of Fa ilure in Time (Piping, Zp=Hc–H) 

Of course, for using the average value, certain assumptions need to hold, for example, that the damage 
caused by the unwanted event is insensitive to the event intensity (i.e., the damage by a low-frequency 
event is not much different to the damage by an event with slightly lower frequency) etc. The analysis 
above only demonstrates the potential of taken the updating effects into account, for real-life 
applications, all explicit and implicit assumptions need to be checked carefully. 
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DISCUSSION 
The considerations and results provided above have lead to the following conclusions and 

recommendations: 
1. Survived historical loadings are valuable information for the reliability of a flood defense, actually 

for any kind of structure, especially, if large uncertainties of the resistance dominate the probability 
of failure. So far, this source of information is hardly used, at least not in a consistent reliability 
analysis and risk management framework. 

2. The present article demonstrates how information on historical and future survived loads can be 
used to update the probability of failure by means of Bayesian Posterior Analysis. 

3. There are basically two ways to update probabilities of failure. One is by updating the basic 
random variables and repeating the reliability analysis for re-determining Pf. The other makes use 
of the definition of conditional probability and the correlation between the historically observed 
event and the future event to be assessed. Both lead to the same answers. However, for practical 
application, especially for high-dimensional problems, the second option is computationally less 
demanding, hence recommended. 

4. The examples demonstrate that the decrease of probability of failure can be orders of magnitude. 
5. Survival information may be taken into account for decision-making in inspection and maintenance 

or in design for newly built structures. In both cases, using the information leads to cost-savings 
either in terms of lower construction cost or in terms of lower risk. The degree of the decrease in 
probability of failure and, therefore, in cost is problem-dependent. 

6. Notice that so far all calculations have been carried out mainly by means of numerical integration 
techniques. The last case is a four-dimensional problem and requires already considerable 
calculation effort and computer memory. Higher dimensional problems might require the use of 
alternative techniques, such as Markov Chain Monte Carlo sampling. 
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